
AUTHOR PREPRINT, NOVEMBER 2017 1

Time Interval Ray Tracing for Motion Blur
Konstantin Shkurko, Cem Yuksel, Daniel Kopta, Ian Mallett, and Erik Brunvand, Member, IEEE

Abstract—We introduce a new motion blur computation method for ray tracing that provides an analytical approximation of motion
blurred visibility per ray. Rather than relying on timestamped rays and Monte Carlo sampling to resolve the motion blur, we associate a
time interval with rays and directly evaluate when and where each ray intersects with animated object faces. Based on our
simplifications, the volume swept by each animated face is represented using a triangulation of the surface of this volume. Thus, we
can resolve motion blur through ray intersections with stationary triangles, and we can use any standard ray tracing acceleration
structure without modifications to account for the time dimension. Rays are intersected with these triangles to analytically determine
the time interval and positions of the intersections with the moving objects. Furthermore, we explain an adaptive strategy to efficiently
shade the intersection intervals. As a result, we can produce noise-free motion blur for both primary and secondary rays. We also
provide a general framework for emulating various camera shutter mechanisms and an artistic modification that amplifies the visibility
of moving objects for emphasizing the motion in videos or static images.

Index Terms—motion blur, ray tracing, sampling

F

1 INTRODUCTION

MOTION blur plays a vital role in realistic simulation
of the camera image capturing process as well as in

production of smooth and natural appearance of motion.
Furthermore, it is a powerful artistic tool for expressing
motion in both videos and static images.

In the context of ray tracing for high-quality rendering,
motion blur has been typically handled using Monte Carlo
sampling by attaching a random timestamp to each ray sam-
ple [1]. This approach adds an extra dimension to the sam-
pling process and often reduces the effectiveness of adap-
tive sampling techniques commonly used for anti-aliasing.
Furthermore each ray must intersect the scene geometry at
its timestamp, which requires on-the-fly reconstruction of
the scene geometry on a per-ray basis. This is cumbersome,
particularly for deforming objects, and requires specialized
acceleration structures, which are often inefficient at han-
dling large motion with deformations. Moreover, like any
Monte Carlo integration, increasing the number of samples
reduces the noise, but never completely eliminates it.

In this paper, we propose time interval ray tracing, pro-
viding an analytical approximation for computing motion-
blurred visibility. Our approach is based on a simplifica-
tion of the concept of intersecting rays with the volumes
swept by moving triangles [2]. We invoke four simplifying
assumptions that allow us to efficiently evaluate the spatio-
temporal intersections of a given ray with a time interval
(as opposed to a single timestamp) using traditional ray
intersection tests with stationary triangles. Hence, we can use
any ray tracing acceleration structure without modification
to handle dynamic geometry. As a result, we can produce
noise-free motion blur for both primary and secondary rays
(including those for shadows, reflections, and global illu-
mination) using only a single ray sample. The technical
contributions in this paper are:

• K. Shkurko, C. Yuksel, D. Kopta, I. Mallett, and E. Brunvand are with the
School of Computing, University of Utah, Salt Lake City, UT, 84112. E-
mail: {kshkurko, dkopta, imallett, elb}@cs.utah.edu, cem@cemyuksel.com

Manuscript received April 19, 2005; revised August 26, 2015.

• Simplifications that permit efficient intersections of
a ray with moving geometry using only stationary
triangles,

• An adaptive subdivision strategy to efficiently shade
the intersection intervals of rays,

• A general framework to emulate various camera
shutter mechanisms, and

• An artistic modification to amplify the visibility of
motion-blurred objects.

Our results show that we can produce noise-free motion blur
(Figure 1) very effectively and that our approach outper-
forms time-sampling strategies, especially in scenes with
considerable motion.

2 BACKGROUND

In a camera, a sensor (film or electronic) integrates inci-
dent light over both space and time. A shutter controls the
amount of light that reaches the sensor by modulating how
long the sensor is exposed to light (exposure). Mechanical
shutters, which are present in all analog and some high-
end digital cameras, block light with a moving panel or
with moving blades. Electrical “shutters” vary the time over
which the sensor accumulates charge: a global shutter reads
out the entire image at the same time while a rolling shutter
reads scanlines sequentially. Relative motion between the
camera and an object produces the photographic effect
called motion blur as a result of the object being visible
to different areas of the sensor over time. Since a shutter
modulates the sensor’s exposure to light, its construction,
type of motion, and speed affect the appearance of motion
blur.

Methods simulating motion blur in computer graphics
typically model continuous motion and deformation of
objects by a series of snapshots in time, referred to as
keyframes. Each keyframe stores all information necessary
to reconstruct the object at its timestamp. Methods can be
classified broadly into image-space and object-space tech-
niques, which we summarize briefly. For a more complete

AUTHOR PREPRINT, NOVEMBER 2017 2

Stratified Sampling, 9.1 sec Time Interval Ray Tracing (Ours), 9.1 sec Reference, 7.3 min

Fig. 1. A deforming slinky falling down a staircase generates complex interaction between blurred visibility and shadows. Our time interval ray
tracing method produces noise-free motion blur in time similar to stratified sampling.

treatment we refer the reader to a report on the state-of-the-
art by Navarro et al. [3].

Image-space techniques post-process rendered images
with motion information, most commonly using per-pixel
motion vectors [5], [6], [7], [8]. These algorithms are efficient
to compute (especially on GPUs), and find wide use in real-
time applications. Unfortunately, because they operate on
rendered images, they are both inaccurate and unable to
produce motion blur for secondary effects such as shadows
and reflections.

Alternatively, object-space methods use object motion
directly for more accurate simulation of motion blur, but
at a greater expense due to maintaining and sampling the
dynamic scene varying over time. Objects undergoing rigid
motion can be handled simply by applying a transfor-
mation computed analytically at a particular time instant.
Deformations, on the other hand, are represented by either
time-dependent paths or transformations per face. Accel-
erating queries for mesh faces requires modifying existing
acceleration structures to handle a notion of time. Object-
space methods can be classified based on the underlying
rendering algorithms they use: rasterization or distribution
ray tracing.

Rasterization-based methods determine visibility by ras-
terizing the volume swept by a moving triangle [2]. These
methods generally separate shading from visibility; there-
fore, they typically cannot account for illumination changes
or secondary effects such as shadows, reflections, and refrac-
tions. Current stochastic techniques first rasterize bounding
volumes of moving triangles and then evaluate whether
they intersect pixel samples via ray tracing [9] or form time-
dependent edge equations per-triangle [10], [11], [12] that
can be extended to handle curved motion [13]. Storing all
spatio-temporal intersections for each pixel is an impor-
tant problem with rasterization and a simple compression
technique has been proposed that combines neighboring
intersection intervals [11]. Image-space line samples [14]
can be used to compute spatio-temporal anti-aliasing and
even approximate motion-blurred ambient occlusion [15]. A
recent GPU algorithm uses micropolygons with an analyti-

cal visibility computation for offline rendering with motion
blur [16]. Researchers have proposed augmenting graphics
hardware for higher-dimensional rasterization that could
seamlessly handle motion and defocus blur for primary
rays [17].

Distribution ray tracing randomly selects a timestamp
for each primary ray [1]. This can require a large number of
samples to generate low-noise images. Furthermore, it needs
on-the-fly reconstruction of the scene’s entire geometry for
each timestamped ray. Glassner [18] proposed modifying
existing acceleration structures to account for time depen-
dencies of geometry and nodes. Modifications have been
applied to grids [19], k-d trees [20], [21], and bounding
volume hierarchies [22], [23], [24], [25], [26].

Motion blur computation can be improved by various
non-uniform sampling and reconstruction strategies. Sam-
ples can be distributed over multiple dimensions by using
a k-d tree to reduce error estimates and then fed into an
anisotropic reconstruction filter [27]. Other methods apply
anisotropic reconstruction filters to high-dimensional light-
field samples [28], [29], [30], [31]. Reconstructing images
from a wavelet basis can be incorporated to reduce variance
[32]. Fourier domain analysis allows sampling both image
and time domains adaptively before applying shear filters
to reconstruct the motion-blurred image [33]. Covariance
matrices storing 5D frequency information can guide this
process [34]. Furthermore, it is possible to reconstruct the
motion-blurred image using compressed sensing analysis
on a sparse set of image samples [35]. Recently, Sun et al. [36]
proposed a blue-noise sampling strategy that extends line-
segment sampling [14] to incorporate motion blur.

Researchers have also proposed non-photorealistic ren-
dering techniques for motion blur. Schmid et al. [37] built
on prior ideas [2], [38] to generate motion traces. Jones and
Keyser [39] proposed a method that generates additional
geometry to visualize the motion silhouette.

AUTHOR PREPRINT, NOVEMBER 2017 3

Face

Edget1

Face

t0

Edge

Edge Edge

(a)

Face

Edget1

Face

t0

Edge Edge

Side

Side

(b)
Fig. 2. A face of a moving object (a) forming a prism, and (b) triangulated
sides traced by edges forming the prism surface.

3 SIMPLIFYING ASSUMPTIONS

Our time interval ray tracing approach for computing mo-
tion blur is based on intersecting rays with the volume
swept by a dynamic triangular face (Figure 2a). We refer
to this volume as a prism. In general, this intersection can
be arbitrarily complex depending on the complexity of the
motion, but virtually all motion blur computation methods
rely on some basic assumptions. The traditional assump-
tions that are commonly used are the following:

Assumption 1: Ray origins and directions remain constant
in time and space. This assumption is satisfied by primary
rays in camera space and secondary rays generated on
objects static in camera space. Secondary rays generated on
dynamic objects, however, do not satisfy this assumption;
hence, we treat them differently.

Assumption 2: Each dynamic vertex has a linear motion
between keyframes. This is a common assumption employed
in almost all motion blur computation methods. Additional
keyframes can be introduced to reduce the discretization
error associated with faces that undergo rotation or non-
linear deformation.

To formulate an our motion blur solution, we introduce
two new assumptions that sufficiently simplify the problem:

Assumption 3: The intersection (hit) point of a ray with
a dynamic triangular face moves linearly over the face surface.
Similar to Assumption 2, this assumption is satisfied for
linear motion involving translation and scale. Rotations and
arbitrary deformations, however, can produce a non-linear
intersection movement over the face. However, introducing
additional keyframes reduces the discretization error. This
assumption allows us to significantly simplify the intersec-
tion computation. If the movement of the intersection point
is linear, we only need to compute the intersection of a ray
with the surface of the prism, instead of computing the
coordinates of the intersection through the prism volume.
The entry point indicates where and when the ray begins
intersecting with the face, and the exit point indicates where
and when the intersection ends. Based on this assumption,
all intersection points in-between these two points can be
calculated using linear interpolation. Since the interpola-
tion is done per-face, the interpolated intersection path
approaches the ideal path as the resolution of the dynamic
object increases.

Assumption 4 (Optional): The bilinear patch generated
by dynamic edges between two keyframes can be approximated
using two triangles. This is analogous to the triangulation of
surfaces for rendering and it allows us to approximate the
prism surfaces using only stationary triangles (Figure 2b).
Similar to Assumptions 2 and 3, this one is perfectly satisfied

A B

C
D

E

F

G

H

I J

de
pt
h

timet0 t1tC tD tE tF tH

Fig. 3. An example space-time hit record shown as a depth-time graph.
The hit interval A-J corresponds to a static face, which is occluded by the
three dynamic faces with hit intervals C-D, D-F, and E-H. The hit interval
E-H is partially occluded by D-F. The points C, D, E, F, and H correspond
to ray intersection points with three prism surfaces.

for motion involving translation and scale. Using higher res-
olution triangulations (with more keyframes) increases the
accuracy of the ray intersection with the prism sides. Note
that this assumption can be eliminated by simply storing the
prism sides as bilinear patches and computing intersections
without triangulation [40]. Therefore, this assumption is
optional, but it greatly simplifies the implementation of our
method by handling all intersections as triangles without
introducing a noticeable difference in practice.

4 TIME INTERVAL RAY TRACING

Our approach associates each camera ray with a time inter-
val [t0, t1], where t0 is the time the shutter opens and t1 is
the time it closes. Hit tests with static faces are handled in
the traditional way. To find the intersection with a dynamic
face, rays intersect the surface triangles making up the
face’s prism. The hit points with a prism indicate where
and when the ray begins and ends intersecting with the
corresponding dynamic face. Note that the hit interval with
a dynamic face does not necessarily cover a ray’s entire time
interval. Hence, a ray can intersect with multiple dynamic
faces within its time interval. These intersections are stored
in a space-time hit record and then shaded to compute the
accumulated color of the ray within its interval.

The space-time hit record keeps a list of hit intervals for
static and dynamic faces that intersect the ray. Figure 3
shows the depth-time graph of an example space-time hit
record, where depth represents the distance of the hit point
to the ray origin (similar to [11]). Each hit interval spans
the time between when the ray begins and when it ends
intersecting the corresponding face. There can be at most a
single static face in the hit record that spans the entire time
interval of the ray, but this static hit interval can be occluded
by any number of dynamic hit intervals corresponding to
dynamic faces. The end points of the dynamic hit intervals
are determined by the ray intersections with the prism sur-
faces. All hit data between these end points are interpolated
linearly based on Assumption 3. If all faces are opaque, the
hit record keeps a disjoint set of hit intervals, such that no
intervals overlap in time. At any time within a ray’s space-
time hit record, the individual hit interval closest to the
ray origin occludes the others. If there are semi-transparent
faces, however, hit intervals may overlap.

AUTHOR PREPRINT, NOVEMBER 2017 4

4.1 Shading Hit Intervals

To compute the accumulated radiance of a ray within its
time interval, we must integrate the space-time hit record
over time by shading each hit interval. Prior methods using
distribution ray tracing blindly compute this integral using
Monte Carlo sampling by tracing multiple rays, each of
which would find a single random hit point within the
space-time hit record. In our case, however, the space-time
hit record is already populated with all intersections of the
ray within the entire time interval before we begin shading.
Therefore, we can leverage this information to strategically
pick the points that will be shaded to minimize the number
of shading operations necessary to approximate this inte-
gral.

For static hit intervals a single shading call is sufficient.
Secondary rays generated while shading a static hit interval
(such as shadow, reflection, or global illumination rays) are
assigned the time interval of the static hit interval. This way,
we can easily compute motion-blurred secondary effects on
static objects.

On the other hand, a dynamic hit interval cannot be
shaded with a single shading call, as the hit information
(including the hit point, texture coordinates, and surface
normal) can change within the interval. Moreover, we can-
not assign time intervals for the secondary rays generated
on dynamic objects, because the hit location can change
over time, which violates Assumption 1. Therefore, we must
shade the hit interval by shading instantaneous points in
time.

Shading a hit interval essentially integrates over a 1D
path on a face where the ray intersects it. We employ an
adaptive shading strategy to minimize the number of shad-
ing operations, while dedicating enough shading operations
to approximate this integral. We begin by shading both end
points of the hit interval. Let tA and tB be the two end point
times of a hit interval A-B and F (q, t) be the shading func-
tion that returns a radiance value L, where q is the hit infor-
mation used during shading (such as the surface normal and
texture coordinates). After we compute LA = F (qA, tA)
and LB = F (qB , tB), we decide whether to subdivide the
interval based on ∆L = LB − LA and ∆q = qB − qA. If
∆L and ∆q are below user-defined error tolerances, we
approximate the value of the integral as ∆t(LA + LB)/2,
where ∆t = tB − tA, which corresponds to linearly chang-
ing radiance L from A to B. Otherwise, we split the hit
interval into two halves at time tC = (tA + tB)/2. In this
case, we rely on Assumption 3 to compute qC at tC using
linear interpolation of qA and qB . To limit the level of
subdivision, we stop splitting intervals when ∆t is below a
user-defined threshold ∆tmin. To achieve a minimum level
of subdivision, we split intervals with ∆t above a user-
defined threshold ∆tmax. For all test results presented in
this paper, we used only a radiance difference threshold
∆Lmin; we did not take the variation in shading parameters
∆q into account for subdivision decisions.

In general, the intersection point of a ray with a dynamic
object moves over that object’s surface with respect to time.
Therefore, when the intersection point leaves a face of the
object, it typically moves onto a neighboring face. As a
result, two neighboring hit intervals often have a common

end point (such as the pointD in Figure 3). To avoid shading
the same point on the object surface multiple times, we
can cache the values of L at the end points shared by
neighboring intervals. To reduce the number of shading
operations further, we can combine multiple connected hit
intervals and begin our adaptive subdivision by shading the
two end points of the joint set of hit intervals (such as points
C and F in Figure 3).

4.2 Shutter Simulation
A mechanical camera shutter takes some time to open and
close. To account for this when computing the accumulated
radiance of a ray, we use a shutter response function S that
indicates the percentage of incident radiance allowed to pass
through the shutter at any given time. Hence, the radiance
that reaches the sensor can be computed as

L(x, t0, t1) =

t1∫
t0

S(x, t)Li(x, t) dt , (1)

where Li(x, t) is the incoming radiance that arrives at time t
through point x on the image plane. Note that S can also be
used to emulate time-varying exposure and time-dependent
film/sensor response to light.

When shading hit intervals for static objects, we can
move the shutter function into the shading equation. Since
the hit point information for a static hit interval remains
constant, we can apply the shutter function to the incoming
illumination during shading. Thus, the rendering equation
can be written as

Lo(ωo, t0, t1) =

∫
Ω

Lis(ωi, t0, t1)fs(ωi, ωo) (ωi · n) dωi (2)

with

Lis(ωi, t0, t1) =

t1∫
t0

S(x, t)Li(ωi, t) dt , (3)

where Lo is the reflected radiance, Lis is the incoming radi-
ance factoring the shutter function S, Ω is the hemisphere,
fs is the surface BRDF with incoming ωi and outgoing ωo
directions, and n is the surface normal. This formulation
assumes that for static faces the BRDF is static as well. Note
that Li in Equation 3 might be coming from yet another
static hit interval. In that case, we can compute Lis similarly
as in Equation 2 by applying S to the incoming light.

This leads to a very simple rule: the shutter function
is applied while computing the incoming radiance of any
time interval. When shading a particular timestamp (used
for shading dynamic hit intervals), we do not consider the
shutter function. Instead, we apply the shutter function to
each dynamic interval outside of the shading call using
Equation 1.

4.3 Amplified Motion Blur
As an object moves faster, motion blur stretches and the
object becomes less visible. Sometimes, it is desirable to
exaggerate the visibility of an object’s motion for artistic
purposes, such as creating motion trails. In our system, we
can amplify the motion blur by selectively boosting visibility

AUTHOR PREPRINT, NOVEMBER 2017 5

of dynamic intervals. A ray’s accumulated radiance can
be written as a weighted sum over the radiances of the
dynamic and static intervals Ldyn and Lstat, using

L(x, t0, t1) = αdynLdyn(x, t0, t1) + αstatLstat(x, t0, t1) , (4)

where αdyn and αstat are the fractions of the shutter interval
occluded by dynamic and static intervals, respectively. We
amplify the visibility of the dynamic objects using a user-
defined parameter γ ∈ (0,∞), defining instead a modified
visibility as α′dyn = (αdyn)1/γ . This formulation ensures that
α′dyn ∈ [0, 1] for αdyn ∈ [0, 1] regardless of the chosen γ
value. Since this increases the total visibility of the ray, we
must scale the visibility of the static objects accordingly,
using α′stat = (1− α′dyn)/(1− αdyn). Note that γ = 1 dis-
ables amplification, γ > 1 amplifies visibility, and values
γ ∈ (0, 1) weaken visibility. Note that such adjustments
are also automatically applied to secondary effects (such
as shadows, reflections, occlusion, and global illumination)
caused by dynamic objects.

5 IMPLEMENTATION DETAILS

The rendering algorithm is very similar to traditional ray
tracing. Rays with timestamps traverse a BVH to find the
closest hit before shading it. Interval rays traverse a BVH
with prism triangles (Figure 2). During traversal, each ray
builds a space-time hit record (Figure 3). Then, each hit
interval is shaded using adaptive subdivision. Hit intervals
of static objects generate secondary rays with intervals. Hit
intervals of dynamic objects are shaded at specific time
points, producing secondary rays with timestamps.

While the underlying theory of our motion blur approx-
imation is conceptually simple, an efficient implementation
requires a number of non-trivial modifications to a ray-
tracing-based renderer. In this section, we explain the details
of these modifications.

The input to our rendering system is a collection of
triangular meshes that include the positions of all dynamic
vertices for all keyframes. In a typical renderer, the mesh
data includes a list of faces, each with three vertex indices.
Our method also generates a list of edges, each with two
vertex indices and up to two face indices. Note that the
prism of a face has eight triangles (Figure 2b): two of them
correspond to the face at times t0 and t1 (face triangles), and
a pair of triangles per edge form the sides of the prism (edge
triangles). The edge list allows neighboring faces to share
edge triangles so they are not duplicated and the prism
triangulations are consistent across neighboring faces. All
of these triangles are placed into an ordinary acceleration
structure for ray tracing.

The acceleration data structure merely keeps a list of
triangle indices. We use one bit of the triangle index to
indicate whether it is a face or an edge triangle. If the hit
triangle is a face triangle, the second bit determines whether
it is the face at the beginning or end of the keyframe. If the
hit triangle is an edge triangle, the second bit determines
which one of the two triangles that approximate the bilinear
patch is hit. The remaining bits keep the corresponding
face or edge index. Thus, given a triangle index, we can
determine the vertex positions of the triangle using either
the face or the edge list. Note that the vertex positions of

all these triangles can be gathered directly from the input
mesh data using these triangle indices. There is no need to
explicitly store the vertex indices of each triangle.

During ray traversal, we keep a list of hit points as a ray
intersects triangles. Each intersection with a face triangle is
recorded as a single hit point associated with the face index.
When the ray intersects an edge triangle, however, we must
treat it differently. If the edge is in-between two faces (i.e. the
edge structure stores two face indices), it means that the ray
exits one prism and enters another. Therefore, we record up
to two hit points: one for each of the two faces sharing the
corresponding edge. We group the hit points using their face
indices. For each pair of hit points with the same face index,
we generate a hit interval and place it in the space-time hit
record. Note that a ray can intersect with the same prism
at multiple different intervals. Therefore, if there are more
than two hit points associated with the same face, they are
grouped in pairs ordered by the closest hit times, so that we
can produce the correct set of intervals. Note that grouping
by ray depth instead can result in incorrect reconstruction
of the intervals in some cases.

When a ray hits a face triangle, the hit point can be found
using the barycentric coordinates of the intersection, and
the hit time of the intersection is merely the time of the
face (either t0 or t1). On the other hand, when a ray hits
an edge triangle, we cannot simply rely on the barycentric
coordinates. This is because the barycentric coordinates on
a single triangle may not be enough to approximate the
bilinear coordinates of the hit point on the corresponding
bilinear patch for the moving edge. Instead, we compute
the hit point and time using all four vertices that define the
bilinear patch. Let i and j be the two vertex indices of the
edge with vertex positions vi0 and vj0 at time t0, and vi1 and
vj1 at time t1. The hit position p on the bilinear patch defined
by these vertices can be written using the bilinear mapping
as

p = (1 − u)
(
(1 − v) vi

0 + v vj
0

)
+ u

(
(1 − v)vi

1 + v vj
1

)
, (5)

where u and v are the bilinear coordinates, which
correspond to time and position along a moving
edge, respectively. Solving for u and v reveals the
barycentric coordinates of the hit point on the dy-
namic face λhit = [v, 1− v, 0]T and the time of the hit
thit = t0 + (t1 − t0)u. Equation 5 defines three equations
for two unknowns, so a closed-form solution can be found
by using two of the three dimensions. However, depending
on the motion and the chosen two dimensions, the solution
can be numerically unstable. Pathological cases exist when
the edge direction or the motion is perpendicular to both
dimensions. Furthermore, since we are approximating the
bilinear patch using two triangles, the intersection point
on the edge triangle may not reside exactly on the bilinear
patch. As a solution, in our implementation we approximate
u and v using mean value coordinates [41] wi0, wj0, wi1, and
wj1 that correspond to vi0, vj0, vi1, and vj1 respectively, such
that

u ≈ (wi1 + wj1)/(wi0 + wj0 + wi1 + wj1) , and (6)

v ≈ (wj0 + wj1)/(wi0 + wj0 + wi1 + wj1) . (7)

To bound the error in approximating bilinear patches
as two triangles, one must consider both possible trian-

AUTHOR PREPRINT, NOVEMBER 2017 6

gulations of the bilinear patch. No matter the shape, the
bilinear patch is contained within the volume defined by
these triangulations. The maximal error between either tri-
angulation and the bilinear patch occurs at time (t0 + t1)/2
and evaluates to

emax =
∥∥∥vj0 − vi0 + vj1 − vi1

∥∥∥ /2 . (8)

When we insert a hit interval into the space-time hit
record, we rely on depth values for occlusion culling. An
inserted interval may overlap temporally with an existing
interval. When the entire time interval of the ray is covered
by a set of intervals in the space-time hit record, we use the
maximum depth value in the hit record for early termination
during ray traversal.

Our prism structure can also be used to trace rays with
timestamps. In that case, it is possible that the ray origin can
be inside one or more prisms, resulting in an odd number of
hit points. By sending another ray in the opposite direction
to find the other hit point, we can generate an interval
for those prisms. Finally, we check if this interval overlaps
with the ray’s timestamp. Note that when tracing rays with
timestamps, the space-time hit record keeps only a single hit
point.

Finally, when using complex shutter functions that do
not depend on the position of the sample on the image
plane x, we can build lookup tables to efficiently integrate
dynamic hit intervals using Equation 1. Let LA = Li(x, tA)
and LB = Li(x, tB) be the incoming radiance for a shaded
interval A-B between times tA and tB . The effective radiance
incorporating the shutter function

L(x, tA, tB) =

tB∫
tA

S(t)

(
LA + (LB − LA)

t− tA
tB − tA

)
dt (9)

can be written as

L(x, tA, tB) =
(tBLA − tALB)∆S′ + (LB − LA)∆S′′

tB − tA
, (10)

where

∆S′ = S′(tB)− S′(tA) =

tB∫
tA

S(t) dt , and (11)

∆S′′ = S′′(tB)− S′′(tA) =

tB∫
tA

t S(t) dt . (12)

Equation 10 can be computed quickly for any shutter func-
tion using lookup tables for S′(t) and S′′(t). For rela-
tively simple shutter functions, the integrals in Equations 11
and 12 can be evaluated directly from a closed-form expres-
sion.

6 RESULTS

We tested our implementation of time interval ray tracing
using a simple multi-threaded non-packetized CPU ray
tracer. The performance results are from a computer with
an Intel Core i7-5820K processor with 32GB RAM. Our
implementation relies on two flavors of BVH to accelerate
ray traversal. Rays with time intervals traverse through a

regular BVH built with prism triangles for each dynamic
object and pairs of keyframes separately, using a top-down
greedy builder based on SAH cost [24]. Rays with time-
stamps rely on an interpolating BVH [23], where each node
keeps track of one bounding box for the beginning and
one for the end of the motion, and are intersected with
the bounds interpolated at the timestamp. Motion blur is
not amplified unless otherwise specified (i.e. γ = 1; see
Section 4.3).

For anti-aliasing, we use adaptive subdivision sampling,
similar to a popular anti-aliasing sampler within the V-Ray
rendering software [42]. This anti-aliasing method strate-
gically distributes primary ray samples to high-frequency
areas of the image and, for some scenes, produces high-
quality anti-aliasing with less than a single sample per-
pixel on average. Our implementation uses no texture filter-
ing; therefore, our anti-aliasing method over-samples areas
with texture discontinuities, introducing some performance
penalty for our method in our tests.

Figures 4 and 5 show the scenes we used for performance
and quality comparisons. As expected, our time interval ray
tracing method produces noise-free visibility. Moreover, due
to our adaptive shading strategy, we eliminate noise in shad-
ing as well. Thus, with our method even a single sample
per pixel fully resolves the motion blur with no noise. To
resolve anti-aliasing with our method, extra samples per-
pixel can be allocated completely independently of time.
Therefore, parts of the images that correspond to fast motion
can be resolved using relatively few samples per pixel.
While adaptive anti-aliasing may reduce the total number
of primary rays, the render time does not necessarily scale
proportionally. This is because primary ray samples placed
near image discontinuities to resolve anti-aliasing can be
more expensive to compute than others, since they typically
visit more BVH nodes and test more triangles.

In comparison, stratified sampling produces a substan-
tial amount of noise in time approximately equal to our
anti-aliased rendering results. This noise is visible in both
primary visibility and secondary effects like shadows. The
reference images are generated using a large number of
samples at a substantial computation cost, and they mostly
(but not fully, especially for large motion) resolve the noise.

The performance numbers in Figures 4 and 5 provide the
necessary information for comparing the cost of time inter-
val ray tracing to time sampling. Comparing performance in
millions of rays per second (MRPS), we can see that our ray
traversal is several times more expensive for most scenes
(3× on average, excluding the Dragon-Sponza scene at
17×). On average, our time interval ray tracing method uses
4.8× more ray-box and 1.9× more ray-triangle intersection
tests than stratified sampling for all scenes but Dragon-
Sponza, which uses 28× and 2.8× more respectively. There
are a number of factors that increase the cost of a ray sample
with our method. First, the increase in triangle count and the
BVH size has a relatively minor impact. More importantly,
rays with timestamps merely find the first hit, but our rays
with time intervals find multiple hits and shade as many
intervals as necessary to resolve the motion (all shading
computation is included in the cost of each ray).

One important observation is that our method with
adaptive anti-aliasing substantially reduces the total num-

AUTHOR PREPRINT, NOVEMBER 2017 7

Time Interval Ray Tracing (Ours) Stratified Sampling Time Interval Ray Tracing
anti-aliased 1 spp equal-time reference 1 spp anti-aliased

H
el

ic
op

te
r

71K static & 5.8K dynamic faces
9 keyframes
240K prism triangles
1920× 1080 resolution
∆Lmin = 0.05

∆tmin = 0.04

∆tmax = 1

1 spp 12 spp 1K spp 1 spp avg. 0.48 spp
Render Time 1.25 sec 14.6 sec 20.1 min 4.98 sec 14.25 sec

MRPS 4.83 4.96 5.01 3.27 2.70
Total Rays 6.04M 72.5M 6.04B 16.3M 38.4M

Tri Tests/Ray 5.6 5.6 5.6 3.0 + 11.6 2.7 + 14.5
Box Tests/Ray 45.2 45.2 45.2 22.5 + 24.9 20.5 + 35.7
Shading Calls 0.82M 9.8M 819.9M 3.4M 8.2M

C
lo

th
ba

ll

100K dynamic faces
4 keyframes
1.5M prism triangles
1920× 1080 resolution
∆Lmin = 0.05

∆tmin = 0.02

∆tmax = 0.1

1 spp 7 spp 512 spp 1 spp avg. 0.15 spp
Render Time 1.2 sec 8.1 sec 9.7 min 14.1 sec 8.1 sec

MRPS 6.93 7.05 7.15 3.59 3.20
Total Rays 8.2M 57.2M 4.2B 50.7M 26M

Tri Tests/Ray 2.0 2.0 2.0 2.0 + 3.5 1.9 + 4.9
Box Tests/Ray 27.4 27.4 27.4 38.6 + 12.0 37.1 + 15.5
Shading Calls 2.1M 14.5M 1.1B 17.3M 9.4M

Sl
in

ky

40K dynamic faces
2 keyframes
197K prism triangles
1440× 1080 resolution
∆Lmin = 0.05

∆tmin = 0.003

∆tmax = 0.2

1 spp 21 spp 1K spp 1 spp avg. 0.86 spp
Render Time 0.46 sec 9.13 sec 7.3 min 3.10 sec 9.14 sec

MRPS 6.82 7.16 7.14 1.97 2.08
Total Rays 3.1M 65.3M 3.1B 6.1M 19.1M

Tri Tests/Ray 4.1 4.1 4.1 5.6 + 18.8 8.2 + 13.2
Box Tests/Ray 22.8 22.8 22.8 28.2 + 28.4 43.2 + 21.1
Shading Calls 1.6M 32.7M 1.56B 4.5M 16.2M

Fig. 4. Comparison of our time interval ray tracing method to time sampling with interpolating BVHs using Monte-Carlo sampling stratified in time.
The number of intersection tests Tri Tests/Ray and Box Tests/Ray are provided as the sum of the values for time sample rays and interval rays.
MRPS stands for millions of rays per second.

AUTHOR PREPRINT, NOVEMBER 2017 8

Time Interval Ray Tracing (Ours) Stratified Sampling Time Interval Ray Tracing
anti-aliased 1 spp equal-time reference 1 spp anti-aliased

H
or

se

17K dynamic faces
2 keyframes
84K prism triangles
1920× 1080 resolution
∆Lmin = 0.05

∆tmin = 0.05

∆tmax = 0.1

1 spp 8 spp 512 spp 1 spp avg. 0.08 spp
Render Time 1.25 sec 4.8 sec 5.06 min 7.35 sec 4.17 sec

MRPS 6.81 13.8 14.0 2.65 2.64
Total Rays 8.5M 66.4M 4.25B 19.5M 11.0M

Tri Tests/Ray 2.19 0.87 0.87 2.32 + 15.04 2.66 + 14.42
Box Tests/Ray 20.98 9.58 9.58 21.66 + 18.34 25.58 + 15.67
Shading Calls 2.1M 16.6M 1.06B 5.8M 3.4M

D
ra

go
n-

Sp
on

za

6M dynamic faces
2 keyframes
31M prism triangles
1440× 1080 resolution
∆Lmin = 0.05

∆tmin = 0.002

∆tmax = 0.2

1 spp 27 spp 512 spp 1 spp avg. 1.14 spp
Render Time 0.51 sec 13.4 sec 4.2 min 9.05 sec 13.6 sec

MRPS 3.04 3.14 3.16 0.172 0.177
Total Rays 1.6M 42M 796.3M 1.6M 2.4M

Tri Tests/Ray 3.83 3.83 3.83 0 + 108.58 0 + 108.13
Box Tests/Ray 102.60 102.61 102.61 0 + 284.13 0 + 296.77
Shading Calls 1.5M 41.0M 778.9M 44.8M 77.9M

Fig. 5. Comparison of our time interval ray tracing method to time sampling with interpolating BVHs using Monte-Carlo sampling stratified in time.
The Dragon-Sponza scene features moving camera and pre-computed illumination stored in textures. The number of intersection tests Tri Tests/Ray
and Box Tests/Ray are provided as the sum of the values for time sample rays and interval rays. MRPS stands for millions of rays per second.

ber of shading calls. Our method can fully resolve motion
blur using only a fraction of the shader calls in most scenes,
as compared to stratified sampling with equal render time,
which fails to resolve motion blur. In fact, producing accept-
ably low-noise motion blur with stratified sampling requires
2 to 3 orders of magnitude more shading calls in most of our
tests (except for the Dragon-Sponza scene, which requires
only one order of magnitude more). Note that in our tests
we used very simple shaders with low computation cost.
However, in an actual production scene with expensive
shaders, the shading cost can often dominate the render
time [43]. Therefore, we would expect that time interval
ray tracing would provide a more significant savings in
render times for scenes with much more expensive shaders
typically used in production.

We also compare our time interval ray tracing method
to random parameter filtering (RPF) [30], an image-space
reconstruction technique that can produce smooth motion
blur from a noisy input sample set. RPF relies on the statisti-
cal dependency between random input parameters and ren-

dered output to apply an image-space, cross-bilateral filter
to remove noise. Figure 6 shows the comparison images for
the Slinky scene. We use stratified sampling with 20 spp as
the input for RPF. Although RPF is effective in determining
the location of the motion blur and filtering out the noise, it
causes over-blur and fails to reproduce the reference image
perfectly. Note that image-space filtering methods like RPF
can also be used with our method for filtering various types
of Monte Carlo sampling noise, though our method does
not produce any noise due to motion blur.

The render time of our method not only depends on
the scene but also the motion. Figure 7 shows the change
in render time with increasing camera motion. As can be
seen, slow motion is computed efficiently, but as the motion
gets faster, and thereby the edge triangles get elongated, the
efficiency of the BVH structure declines (and more shading
computations are introduced). It is interesting to note that
when more intermediate keyframes are introduced (with
identical overall motion), even though the triangle count
substantially increases, the render times can be shorter for

AUTHOR PREPRINT, NOVEMBER 2017 9

Time Interval Ray Tracing (Ours) Ours Stratified Sampling RPF
anti-aliased avg. 0.86 spp 1K spp 20 spp 20 spp

9.14 sec 7.3 min 9.48 sec 13 min

Fig. 6. Comparison of our time interval ray tracing to stratified sampling, including reconstruction via random parameter filtering (RPF) [30]. RPF
uses the 20 spp stratified sampling image as input, and reconstruction takes 13 min.

0 3 6 9 12 15

Camera Motion (distance per frame)
0

10

20

30

40

50

Re
nd

er
 T

im
e

(s
ec

)

4 keyframes
3 keyframes
2 keyframes

Fig. 7. Render times for different camera motions with different numbers
of keyframes for the Dragon-Sponza scene.

fast motion. This shows that a BVH structure with splits [44]
can produce a more efficient acceleration structure and
would be particularly beneficial for our method.

Considering a dynamic object with F triangles and E
edges represented using two keyframes, computing motion
blur with time sampling produces 2F triangles. In our ap-
proach, we generate 2F+2E triangles, which is 5F triangles
for closed objects. Even though these extra triangles are
not stored, their indices are placed into the acceleration
structure and they are intersected against rays. Therefore,
the build time and the size of the acceleration data structure
scale roughly linearly (about 2.5× as compared to interpo-
lating BVHs).

We demonstrate the effect of various shutter functions
in Figure 8. Notice that the shutter function also affects
secondary effects such as shadows. Our method can handle
any shutter function without any apparent performance
penalty, including numerically challenging ones, such as the
sharp peak that produces results similar to the photography
trick “second-curtain flash.”

This shutter function is also featured in Figure 9, show-
ing the effect of amplified motion blur. Notice that the trail
behind the car is substantially more visible with amplified
motion blur. Figure 10 shows another amplified motion
blur example but using the instant shutter function with
the slinky animation. In this case, the shadows cast by the
slinky become substantially darker with amplified motion
blur, including the self-shadowing of moving parts.

A challenging case for our method is shown in Fig-

ure 11, including half a million prisms with highly elongated
triangles stretched half-way across the image. Therefore,
the BVH without splits provides an extremely poor space
partitioning for our method. On the other hand, this is a
trivial case for interpolating BVHs, since the motion is a
mere translation of the entire object. Therefore, stratified
sampling can render this scene with 1,500 spp within the
same two minutes it takes to render using our method, but
resolving the noise in the trail requires more than an order
of magnitude more rays.

Indeed, resolving the noise due to motion blur with
time sampling is highly challenging for high-dynamic-range
(HDR) rendering. Figure 12 shows an example where a
thrown lightsaber is moving across the image. This ex-
ample requires an extremely large number of samples to
resolve motion blur using time sampling. In comparison,
our method quickly produces noise-free results.

Since our method is based on ray tracing, it can be used
directly with distribution ray tracing frameworks to com-
pute indirect illumination or ambient occlusion. Figure 13
shows an example with ambient occlusion and glossy reflec-
tions where random ray samples generated during shading
are traced using time intervals. This way, the resulting
secondary effects include motion as well. The visible noise
in this image comes from Monte Carlo sampling of ambient
occlusion and glossy reflections.

7 DISCUSSION

The idea of intersecting rays with volumetric prisms has
been explored in prior research, primarily in the context of
rasterization. Intersections with prisms also appear in other
contexts, such as computing caustic volumes using beam-
tracing [45], [46], [47]. Our main contribution in this work
is a framework to avoid costly volumetric intersections and
allow efficient motion blur computation using intersections
with merely stationary triangles stored in an ordinary accel-
eration structure without modifications to account for time.

The main advantage of time interval ray tracing is that
it eliminates sampling along time, thereby reducing the
dimensionality of rendering. This is particularly useful for
adaptive under-sampling methods used for anti-aliasing.
While such anti-aliasing approaches are very effective at

AUTHOR PREPRINT, NOVEMBER 2017 10

(a) Rolling shutter, up (b) Instant (c) Linear (d) Sinusoid (e) Truncated Gaussian

(f) Rolling shutter, down (g) Sharp peak (h) Wide linear (i) Wide sinusoid (j) Oscillating

Fig. 8. This scene applies various shutter functions to a teapot moving left-to-right. Insets show the outline of each shutter function. Subfigures (a)
and (f) show the effect of a rolling shutter. Subfigures (b)-(d), (h) and (i) show typical shutters used in computer graphics. More artistically-driven
shutters can generate wildly varying effects, from (g) a sharp peak to (j) oscillating shutters.

Fig. 9. Amplified motion blur: (top) no amplification with γ = 1 and (bottom) amplification with γ = 2. The images were rendered using the sharp
peak shutter function in Figure 8g.

Fig. 10. Amplified motion blur: (left) no amplification with γ = 1 and
(right) amplification with γ = 3.

reducing the total number of primary rays without sacrific-
ing image quality, they are only useful if each primary ray
sample returns a converged result. Therefore, they cannot
be paired with time-sampled motion blur.

On the other hand, if the rendering method already
generates a large number of rays per pixel (such as depth
of field sampling or traditional path tracing), simply assign-
ing timestamps to each ray and changing the acceleration

structure accordingly can be good enough to resolve motion
blur with low noise. However, time interval ray tracing can
still be favorable for efficient path tracing implementations
that minimize the number of primary rays, but introduce
additional secondary rays (to avoid excessive shader calls).
Furthermore, time interval ray tracing is ideal for rendering
algorithms that aim to completely resolve each computed
sample, such as irradiance caching [48].

Like any sampling method that uses adaptive subdi-
vision, our shading approach can miss changes within an
interval when the end points are similar. Figure 14 shows a
worst-case scenario for our method. In this scene, the mirror
on the left is stationary, so the reflections are properly re-
solved using reflection rays with time intervals. The mirror
on the right, however, is moving along its plane, such that
the reflections appear stationary in camera-space. Since the
mirror on the right is a dynamic object, the reflections are
handled using rays with timestamps. Thus, the motion blur
in this reflection is not computed with time interval ray
tracing, but with adaptive shading only. As a result, when

AUTHOR PREPRINT, NOVEMBER 2017 11

Fig. 11. A space ship coming out of warp speed, including half a million highly elongated prisms stretched half-way across the image. Model from
Ricky “MadMan1701A” Wallace (www.madshipyard.com).

S
tra

tifi
ed

55
sp

p
(6

.6
se

c)
S

tra
tifi

ed
10

K
sp

p
(2

0
m

in
)

O
ur

s
(6

.5
se

c)

Fig. 12. A lightsaber that moves across the image while rotating around
its center of mass. It is frozen in the air in the last quarter of the time
interval. There are 128 keyframes and the images include an image-
space bloom effect as a post-process, producing the glow around the
lightsaber.

both reflection rays originating at the two endpoints of the
hit interval miss the moving teapot or its shadow, the hit
interval is not subdivided and the motion is missed (circled
areas in Figure 14-left). Yet, such exceptional cases can be
easily resolved by subdividing all intervals that are longer

Fig. 13. Moving billiard balls rendered using our method with motion-
blurred ambient occlusion and glossy reflections.

than a user-defined threshold, regardless of the differences
between the end points, as shown in Figure 14-right.

Our assumptions allow us to aggressively simplify the
motion blur computation, but they do not impose additional
restrictions on the types of motion that can be represented
properly. Similar to virtually all motion blur algorithms,
handling non-linear motion and rotation requires additional
keyframes. If an insufficient number of keyframes is pro-
vided, the surface of the triangulated prism (Figure 2b)
can substantially deviate from the actual prism (Figure 2a)
and lead to incorrect intervals. To demonstrate this, we
prepared an extreme example, where a triangle is both
substantially rotated and translated, shown in Figure 15.
Notice that in this example our triangulated prism produces
incorrect visibility with few keyframes, as compared to the
reference generated using time sampling. This is because
the triangulation of the bilinear patches forming the sides
of the prism does not have enough resolution to properly
approximate the shapes of the bilinear patches.

As a solution, we can compute the intersections with
the prism by directly using the bilinear patches [40], which
produces results identical to the reference, as it completely
eliminates our Assumption 4. In Figure 16, we show more

AUTHOR PREPRINT, NOVEMBER 2017 12

Fig. 14. A moving teapot reflecting in two mirrors: the left one is stationary and the right one is moving downward. The moving mirror provides
a difficult case for our method because the reflection is stationary in camera-space but must be resolved by adaptive shading using discrete
timestamps (left). Enforcing subdivision for hit intervals that are longer than a user-defined threshold ∆tmax fixes the artifacts (right).

examples from our stress test with extremely deformed
prisms, which are uncommon in typical scenes. Notice that
using bilinear patches, our method produces results virtu-
ally identical to the stratified sampling reference. Triangula-
tion (using Assumption 4) fails to match the outcome of the
reference images, but the inaccuracies it produces would be
extremely difficult to notice in a scene even if such an ex-
treme deformation exits. Regardless, none of these methods
(including the stratified sampling reference) can handle such
extreme deformations correctly without introducing more
keyframes to properly represent rotational motion, which
would also eliminate the extreme deformation of the prisms.

In practice, however, such extreme motions are unlikely
to take place within a single frame of an animation. When
the deformation of the bilinear patch is not as extreme,
our triangulation provides a good approximation, as evi-
dent in our test results including numerous faces that go
through non-linear motion (the slinky, helicopter, cloth-
ball, and horse scenes). To evaluate the effect of triangu-
lation (Assumption 4) we use mean structural similarity
(MSSIM) [49] that provides a localized perceptual error
metric. Generally, MSSIM values above 0.97− 0.99 indicate
images that are visually indistinguishable. In our tests, we
found that the MSSIM values comparing results with and
without Assumption 4 for every example in Figures 4 and 5
are above 0.999. This indicates that triangulation is indeed
an acceptable assumption in practice.

An application of our method that would like to handle
extreme motion, as in Figure 15, can use either higher-
resolution triangulations or ray intersections directly with
the bilinear patches. Although excluded from our imple-
mentation, it is also possible to automatically detect the
triangulation error (Equation 8) and use higher-resolution
triangulation or bilinear patches only for some edges in the
scene, eliminating any potential error due to Assumption 4.

On the other hand, we found no evidence that any
visible artifacts are linked to our Assumption 3, which
allows calculating the hit point data by interpolating the
two end points of an interval. In fact, the error introduced
by this assumption is correlated to the resolution of the
moving object, and the related triangulation error exists for
all rendering algorithms that use triangles.

Our time interval ray tracing method can produce mo-
tion blur due to camera motion by treating all objects as
dynamic, since they are dynamic in camera-space (as in
Figure 5, Dragon-Sponza). However, when it comes to ani-
mated lights, our method must also rely on time sampling
to compute blur in shadows and shading from these lights.
Similarly, we cannot handle blur due to the changes of the
internal camera parameters (such as field of view) without
sampling them.

8 CONCLUSION

We have introduced an efficient method for ray tracing
using time intervals to produce noise-free motion blur for
both primary and secondary rays. Most significantly, our
simplifying assumptions reduce the problem of motion blur
computation to ray intersections with stationary triangles,
which permits using any traditional acceleration structure
without modifications to account for the notion of time.
We have also described an adaptive shading strategy for
shading dynamic hit intervals, a mathematical framework
for incorporating any shutter function, and a simple modi-
fication for amplifying the visibility of dynamic objects for
artistic purposes. By separating the time dimension from
sampling, we have shown that our method can effectively
use adaptive under-sampling for anti-aliasing. Our time
interval ray tracing approach can produce high-quality im-
ages with minimal primary rays and a reduced number of
shading calls for a variety of animations, including objects
undergoing rapid deformations.

ACKNOWLEDGMENTS

This material is supported in part by the National Science
Foundation under Grant No. 1409129. Thiago Ize and Pe-
ter Shirley provided helpful feedback. Cem Yuksel pro-
vided Slinky, Clothball, and Lightsaber scenes, and com-
bined Sponza atrium by Marko Dabrovic with the Stanford
Dragon for the Dragon-Sponza scene. We also thank the
anonymous reviewers for their time and helpful feedback.

AUTHOR PREPRINT, NOVEMBER 2017 13

Triangles 2 keyframes 3 keyframes 10 keyframes
R

ef
er

en
ce

B
ili

ne
ar

P
at

ch
Tr

ia
ng

ul
at

ed
P

ris
m

Fig. 15. A triangle rotating clockwise and moving into the page shows
a possible worst-case scenario for triangulating prism sides: (top) ref-
erence using time sampling, (middle) time interval ray tracing using
bilinear patches to avoid the triangulation in Assumption 4, and (bottom)
time interval ray tracing using triangulated bilinear patches based on
Assumption 4. In this case, the error in triangulating the prism sides
introduces incorrect visibility with our method due to Assumption 4.
This problem is mitigated by introducing additional keyframes, which is
already necessary to properly resolve the motion.

REFERENCES

[1] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,”
in Proceedings of SIGGRAPH, 1984, pp. 165–174.

[2] C. W. Grant, “Integrated analytic spatial and temporal anti-
aliasing for polyhedra in 4-space,” SIGGRAPH Comput. Graph.,
vol. 19, no. 3, pp. 79–84, Jul. 1985.

[3] F. Navarro, F. J. Sern, and D. Gutierrez, “Motion blur rendering:
State of the art.” Comput. Graph. Forum, vol. 30, no. 1, 2011.

[4] K. Sung, A. Pearce, and C. Wang, “Spatial-temporal antialiasing,”
IEEE Transactions on Visualization and Computer Graphics, vol. 8,
no. 2, pp. 144–153, Apr. 2002.

[5] M. Potmesil and I. Chakravarty, “Modeling motion blur in
computer-generated images,” SIGGRAPH Comput. Graph., vol. 17,
no. 3, pp. 389–399, Jul. 1983.

[6] M. McGuire, P. Hennessy, M. Bukowski, and B. Osman, “A re-
construction filter for plausible motion blur,” in Symposium on
Interactive 3D Graphics and Games, ser. I3D ’12, 2012.

[7] J.-P. Guertin, M. McGuire, and D. Nowrouzezahrai, “A fast and
stable feature-aware motion blur filter,” in High Performance Graph-
ics, ser. HPG’14, June 2014.

[8] J.-P. Guertin and D. Nowrouzezahrai, “High Performance Non-
linear Motion Blur,” in Eurographics Symposium on Rendering -
Experimental Ideas & Implementations, 2015.

[9] M. McGuire, E. Enderton, P. Shirley, and D. Luebke, “Real-time
stochastic rasterization on conventional GPU architectures,” in
High Performance Graphics, ser. HPG ’10, 2010.

[10] T. Akenine-Möller, J. Munkberg, and J. Hasselgren, “Stochastic
rasterization using time-continuous triangles,” in Symposium on
Graphics Hardware, ser. GH ’07, 2007, pp. 7–16.

[11] C. J. Gribel, M. Doggett, and T. Akenine-Möller, “Analytical mo-
tion blur rasterization with compression,” in High Performance
Graphics, ser. HPG ’10, 2010, pp. 163–172.

[12] J. Munkberg, P. Clarberg, J. Hasselgren, R. Toth, M. Sugihara, and
T. Akenine-Möller, “Hierarchical stochastic motion blur rasteriza-
tion,” in High Performance Graphics, ser. HPG ’11, 2011, pp. 107–118.

[13] C. J. Gribel, J. Munkberg, J. Hasselgren, and T. Akenine-Möller,
“Theory and analysis of higher-order motion blur rasterization,”
in High Perforamnce Graphics, ser. HPG ’13, 2013, pp. 7–15.

[14] T. R. Jones and R. N. Perry, “Antialiasing with line samples,”
in Rendering Techniques 2000, ser. Eurographics, B. Proche and
H. Rushmeier, Eds. Springer Vienna, 2000, pp. 197–205.

Motion Time Sampling Ours with Ours with
Geometry Reference Bilinear Patches Triangles

Fig. 16. A selection of frames from the stress test, where a single triangle
undergoes different transformations, each over the duration of a single
frame. The Motion Geometry column shows the triangle keyframes,
where the black triangle indicates the color and the position of the
triangle at the start of the motion, and the colored triangle indicates the
end of the motion. The Time Sampling Reference column shows the
image when using stratified sampling. The last two columns show the
results of our method using bilinear patches and triangulated prisms.
Using the bilinear patches produces results virtually identical to the
reference. While triangulation provides reasonable results for majority
of the tested motions, in the extreme cases shown here it can deviate
from the reference.

[15] C. J. Gribel, R. Barringer, and T. Akenine-Möller, “High-quality
spatio-temporal rendering using semi-analytical visibility,” ACM
Trans. Graph., vol. 30, no. 4, Jul. 2011.

[16] X. Huang, Q. Hou, Z. Ren, and K. Zhou, “Scalable programmable
motion effects on GPUs,” Computer Graphics Forum, vol. 31, no. 7,
pp. 2259–2266, 2012.

[17] J. Nilsson, P. Clarberg, B. Johnsson, J. Munkberg, J. Hasselgren,
R. Toth, M. Salvi, and T. Akenine-Möller, “Design and novel
uses of higher-dimensional rasterization,” in Proceedings of High-
Performance Graphics, ser. HPG’12, 2012, pp. 1–11.

[18] A. Glassner, “Spacetime ray tracing for animation,” Computer
Graphics and Applications, IEEE, vol. 8, no. 2, pp. 60–70, March 1988.

[19] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker, “Ray tracing an-
imated scenes using coherent grid traversal,” in ACM SIGGRAPH,
vol. 25, 2006, pp. 485–493.

[20] J. Günther, H. Friedrich, I. Wald, H.-P. Seidel, and P. Slusallek, “Ray
tracing animated scenes using motion decomposition,” Computer
Graphics Forum, vol. 25, no. 3, Sep. 2006.

[21] P. Djeu, W. Hunt, R. Wang, I. Elhassan, G. Stoll, and W. R. Mark,
“Razor: An architecture for dynamic multiresolution ray tracing,”
Department of Computer Sciences, The University of Texas at
Austin, Tech. Rep. TR-07-52, January 2007.

[22] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha, “RT-
DEFORM: Interactive ray tracing of dynamic scenes using BVHs,”
in Interactive Ray Tracing (IRT06), 2006.

AUTHOR PREPRINT, NOVEMBER 2017 14

[23] P. H. Christensen, J. Fong, D. M. Laur, and D. Batali, “Ray tracing
for the movie ‘Cars’,” in Interactive Ray Tracing IRT06, September
2006, pp. 1–6.

[24] I. Wald, S. Boulos, and P. Shirley, “Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies,” ACM Transactions
on Graphics, vol. 26, no. 1, 2007.

[25] Q. Hou, H. Qin, W. Li, B. Guo, and K. Zhou, “Micropolygon ray
tracing with defocus and motion blur,” in ACM SIGGRAPH, 2010,
pp. 64:1–64:10.

[26] L. Grünschloß, M. Stich, S. Nawaz, and A. Keller, “MSBVH: An
efficient acceleration data structure for ray traced motion blur,” in
High Performance Graphics, ser. HPG ’11, 2011.

[27] T. Hachisuka, W. Jarosz, R. P. Weistroffer, K. Dale, G. Humphreys,
M. Zwicker, and H. W. Jensen, “Multidimensional adaptive sam-
pling and reconstruction for ray tracing,” in ACM SIGGRAPH,
2008, pp. 33:1–33:10.

[28] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, “Temporal
light field reconstruction for rendering distribution effects,” in
ACM SIGGRAPH 2011 Papers, ser. SIGGRAPH ’11, 2011, pp. 55:1–
55:12.

[29] J. Lehtinen, T. Aila, S. Laine, and F. Durand, “Reconstructing the
indirect light field for global illumination,” ACM Trans. Graph., pp.
51:1–51:10, 2012.

[30] P. Sen and S. Darabi, “On filtering the noise from the random
parameters in Monte Carlo rendering,” ACM Trans. Graph., vol. 31,
no. 3, pp. 18:1–18:15, Jun. 2012.

[31] J. Munkberg, K. Vaidyanathan, J. Hasselgren, P. Clarberg, and
T. Akenine-Mller, “Layered reconstruction for defocus and motion
blur,” Computer Graphics Forum, vol. 33, no. 4, pp. 81–92, 2014.

[32] R. S. Overbeck, C. Donner, and R. Ramamoorthi, “Adaptive
wavelet rendering,” in ACM SIGGRAPH Asia, 2009, pp. 140:1–
140:12.

[33] K. Egan, Y.-T. Tseng, N. Holzschuch, F. Durand, and R. Ramamoor-
thi, “Frequency analysis and sheared reconstruction for rendering
motion blur,” in SIGGRAPH 2009, 2009.

[34] L. Belcour, C. Soler, K. Subr, N. Holzschuch, and F. Durand, “5D
covariance tracing for efficient defocus and motion blur,” ACM
Trans. Graph., vol. 32, no. 3, pp. 31:1–31:18, Jul. 2013.

[35] P. Sen and S. Darabi, “Compressive estimation for signal integra-
tion in rendering,” Computer Graphics Forum, vol. 29, no. 4, 2010.

[36] X. Sun, K. Zhou, J. Guo, G. Xie, J. Pan, W. Wang, and B. Guo, “Line
segment sampling with blue-noise properties,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 127:1–127:14, Jul. 2013.

[37] J. Schmid, R. W. Sumner, H. Bowles, and M. Gross, “Pro-
grammable motion effects,” in ACM SIGGRAPH, ser. SIGGRAPH
’10, 2010, pp. 57:1–57:9.

[38] J. Korein and N. Badler, “Temporal anti-aliasing in computer
generated animation,” SIGGRAPH Comput. Graph., vol. 17, no. 3,
pp. 377–388, Jul. 1983.

[39] N. Jones and J. Keyser, “Real-time geometric motion blur for a
deforming polygonal mesh,” in Computer Graphics International,
ser. CGI ’05, 2005, pp. 14–18.

[40] S. Ramsey, K. Potter, and C. Hansen, “Ray bilinear patch intersec-
tions,” Journal of Graphics Tools, vol. 9, no. 3, pp. 41–47, 2004.

[41] M. S. Floater, “Mean value coordinates,” Computer Aided Geometric
Design, vol. 20, no. 1, pp. 19 – 27, 2003.

[42] Chaos Group, “V-ray documentation: Image sampler & anti-
aliasing,” http://docs.chaosgroup.com/pages/
viewpage.action?pageId=7897184, 2015.

[43] C. Eisenacher, G. Nichols, A. Selle, and B. Burley, “Sorted deferred
shading for production path tracing,” Computer Graphics Forum,
vol. 32, no. 4, 2013.

[44] M. Stich, H. Friedrich, and A. Dietrich, “Spatial splits in bounding
volume hierarchies,” in High Performance Graphics, ser. HPG ’09,
2009, pp. 7–13.

[45] M. Watt, “Light-water interaction using backward beam tracing,”
in Proceedings of the 17th Annual Conference on Computer Graphics
and Interactive Techniques, ser. SIGGRAPH ’90, 1990, pp. 377–385.

[46] M. Ernst, T. Akenine-Möller, and H. W. Jensen, “Interactive render-
ing of caustics using interpolated warped volumes,” in Proceedings
of Graphics Interface 2005, ser. GI ’05, 2005, pp. 87–96.

[47] G. Liktor and C. Dachsbacher, “Real-time volume caustics with
adaptive beam tracing,” in Symposium on Interactive 3D Graphics
and Games, ser. I3D ’11, 2011, pp. 47–54.

[48] G. J. Ward, F. M. Rubinstein, and R. D. Clear, “A ray tracing
solution for diffuse interreflection,” in ACM SIGGRAPH, 1988, pp.
85–92.

[49] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,”
IEEE Transactions on Image Processing, vol. 13, no. 4, 2004.

Konstantin Shkurko received the BA in math-
ematics and physics and an MS in computer
graphics from Cornell University, in 2007 and
2010, respectively. He is currently working to-
ward the PhD in computer graphics from the
School of Computing at the University of Utah.
His research focuses mainly on ray tracing hard-
ware, but also includes acceleration structures,
rendering algorithms, and scientific visualization.

Cem Yuksel is a faculty member in the School
of Computing at the University of Utah. Previ-
ously, he was a postdoctoral fellow at Cornell
University, after receiving his PhD in Computer
Science from Texas A&M University in 2010. His
research interests are in computer graphics and
related fields, including physically-based simula-
tions, rendering techniques, global illumination,
sampling, GPU algorithms, graphics hardware,
knitted structures, and hair modeling, animation,
and rendering.

Daniel Kopta received his PhD from the Uni-
versity of Utah in 2016, researching ray-traced
computer graphics and GPU architecture. Since
then, he has worked as a Senior OptiX engineer
at NVIDIA, developing the OptiX GPU ray tracing
framework. He is currently a faculty member in
the School of Computing at the University of
Utah.

Ian Mallett received BS degrees in computer
science and pure mathematics from the Uni-
versity of New Mexico in 2014. He is currently
working toward a PhD in computer graphics at
the School of Computing, University of Utah.
His research focuses on rendering algorithms
and light transport, with excursions to ray tracing
hardware.

Erik Brunvand Received his PhD from Carnegie
Mellon University in 1990. Since then he has
been a faculty member in the School of Com-
puting at the University of Utah where his in-
terests include the design of application-specific
computers, graphics processors, physical com-
puting, asynchronous systems, VLSI integrated
circuit design, and arts/technology collaboration
and integration in both research and education.

