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ABSTRACT

Hardware acceleration for ray tracing has been a topic of great interest in computer

graphics. However, even with proposed custom hardware, the inherent irregularity in the

memory access pattern of ray tracing has limited its performance, compared with raster-

ization on commercial GPUs. We provide a different approach to hardware-accelerated

ray tracing, beginning with modifying the order of rendering operations, inspired by the

streaming character of rasterization. Our dual streaming approach organizes the mem-

ory access of ray tracing into two predictable data streams. The predictability of these

streams allows perfect prefetching and makes the memory access pattern an excellent

match for the behavior of DRAM memory systems. By reformulating ray tracing as fully

predictable streams of rays and of geometry we alleviate many long-standing problems of

high-performance ray tracing and expose new opportunities for future research. Therefore,

we also include extensive discussions of potential avenues for future research aimed at

improving the performance of hardware-accelerated ray tracing using dual streaming.
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CHAPTER 1

INTRODUCTION

Computer-generated imagery has become pervasive in the entertainment industry over

the past couple of decades: from video games where each image is generated at interactive

rates (16 milliseconds) to film and visual effects where each image may take hours to

compute. The thirst for visual entertainment drives the development of sophisticated al-

gorithms, software and hardware. While video games rely on specially designed graphics

processing hardware, movie studios employ thousands of commodity machines through-

out large data centers. Each application relies on a different image generation algorithm

and corresponding hardware architectures. The film industry desires photo-realistic im-

ages and can tolerate high computation time. The realism is achieved by using an al-

gorithm that can simulate light propagation, ray tracing. Although ray tracing can easily

describe all desired lighting effects with a single computational operation, making derived

algorithms performant is difficult. Interactive graphics relies on dedicated hardware de-

signed specifically to accelerate a different image generation algorithm, rasterization. Al-

though fast, rasterization can not simulate complex lighting effects without sophisticated

approximation techniques.

The two applications are starting to merge: real-time interactive computer graphics

strives for film-like visual quality, while the software that generates film images strives for

interactivity to improve artists’ productivity. Even though ray tracing can simulate com-

plex lighting effects, making it a suitable choice to address the needs of both applications,

the major challenge in making ray tracing fast enough for interactive image generation is

improving how it accesses memory. Tree-like data structures, common for acceleration,

access memory almost randomly, straining the memory subsystem which is designed for

sequential access instead. Thus, enabling ray tracing to reach interactive rates requires

innovative algorithmic improvements and custom hardware architectures.
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1.1 The Memory Wall
Although the number of transistors in processor chips continues to grow, the com-

putational performance of individual processing cores has not been improving as fast.

As a result, the total computational performance per chip has been increasing through

parallelism by including more cores per chip. Unfortunately, the bandwidth between the

on-chip processing cores and the off-chip main memory has not been increasing at a pace

similar to the growth in transistor counts. In fact, the available memory bandwidth per

core has been decreasing, effectively starving each core of data. To combat this starvation,

hardware and software designers must focus their efforts on creating systems that are

frugal in terms of accessing and moving data.

Current architectures address the per-core data starvation through a hierarchical mem-

ory system. The main memory is at the top of the hierarchy and provides data to the

components on lower levels. Individual on-chip components, called caches, store recently

used data at different levels in the hierarchy. Caches provide shared access to data between

multiple cores, thus reducing total off-chip memory bandwidth required to feed the chip.

The data structures used to improve the performance of ray tracing rely on trees to orga-

nize the input data. Tree traversal results in accessing tree nodes scattered throughout the

memory, which reduces the likelihood of reusing data fetched into the on-chip cache hier-

archy and thus requires more data requests to the main memory. Such incoherent access

patterns introduce additional latency and energy costs at the main memory level because

of the design of the dynamic random access memory (DRAM) chips that implement the

main memory. Data access is so important that the memory hierarchy, especially DRAM,

requires the largest portion of energy used to generate a single image [76]. Because data

movement can be the primary performance limitation and energy consumer in modern

computing systems, the random data access has so far has prevented ray tracing from

being used for real-time image generation.

An approach to reducing the negative effects related to random memory accesses orga-

nizes memory references as a stream: a set of contiguous references, or with a fixed stride,

that bring in data as a continuous block rather than as individual data elements. Streamed

memory accesses improve the performance and energy use for at least three reasons. First,

data streaming relieves the processor of address calculation tasks and pointer chasing
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when traversing tree-like data structures. Second, streaming helps hide memory latency

via prefetching because the next set of data needed for computation is known perfectly in

advance. Finally, the circuit-level architecture of the DRAM chips that make up the off-chip

main memory is designed for streaming. Each access to DRAM streams contiguous data

across the memory interface, typically at least a 64-byte chunk of data, called a cache

line. Internally, DRAM chips provide fast and low-energy access to even larger blocks

of contiguous data about 100 cache lines in size.

Designing problem-specific software along with the dedicated hardware offers a com-

pelling methodology to address the problems introduced by the memory wall [51]. In this

spirit, we focus on co-designing hardware and software for path tracing, an algorithm that

helps generate photo-realistic images but requires a significant amount of computation

and leads to incoherent memory access patterns.

1.2 Dissertation Statement
This dissertation explores approaches to reducing the amount of energy used to gener-

ate an image frame using dedicated ray tracing hardware architectures without sacrificing

performance or scalability. Given that the primary source of energy consumption for ray

tracing of large complex scenes is data movement, specifically to and from DRAM [76], this

thesis modifies how ray tracing algorithms and hardware use DRAM to derive synergistic

efficiencies. Specifically, this work restructures path tracing into a streaming algorithm that

both optimizes the use of scene and ray data, and optimizes the delivery of that data to the

processors through making accesses to it perfectly predictive ahead of computation. This

work also develops a custom hardware architecture to support this streaming algorithm

and evaluates the architecture using cycle-accurate simulation.

1.3 Dissertation Organization
Chapter 2 introduces the necessary concepts from various fields. Chapter 3 describes

the previous work aimed at improving ray tracing efficiency in commodity hardware and

dedicated ray tracing hardware architectures. Chapter 4 describes the new algorithmic

formulation of ray tracing, and Chapter 5 proposes and evaluates the corresponding ded-

icated hardware architecture. Finally, we conclude in Chapter 6.



CHAPTER 2

BACKGROUND

This work combines concepts from several fields, mainly the simulation of light prop-

agation, data structures, and hardware architectures. This chapter provides only a high-

level introduction to the important concepts. Each presented topic can certainly be ex-

panded in significant detail, and the discussion aims to provide plenty of references an

interested reader can follow to gain a deeper understanding.

We start by introducing how light behavior is modeled, motivating the formulations

and explaining the physical intuition behind them. Then, we discuss how the resulting

equations can be solved mathematically and thus the behavior of light simulated compu-

tationally. Finally, we introduce basic concepts of dedicated hardware architectures.

2.1 Simulating Light Propagation
Generating images of objects and their compositions specified digitally is one of the

core subfields of computer graphics called rendering. At a very high level, the process

mimics how one might capture a photograph, except it uses computers to simulate how

light travels towards the camera. Rendering requires algorithms, data structures, and

methods that solve two problems. The first is a model of how light behaves so it can

be simulated computationally. The second is a faithful digital representation of objects,

including physical dimensions, appearance, movement, etc.

2.1.1 Physics of Light Transport

A high-level intuition behind light propagation can be built through a thought ex-

periment that considers a single “photon” as it travels through a simple scene shown

in Figure 2.1. Although in reality there are billions of photons interacting with objects

at once, it is easier conceptually to consider a single particle carrying some energy as it

travels throughout the scene. First, the photon is created (emitted) at a light source. The
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Figure 2.1: A thought experiment that considers a single particle carrying energy traveling
throughout a scene, loosely referred to as a photon. The photon is emitted, 1. The photon
travels through a scene (2) until it hits a sphere, 3. Photon reflects and proceeds until it hits
a wall, 4. Finally, the photon reflects into the camera where it is absorbed by the sensor, 5.

photon then proceeds to travel through the scene until it hits the sphere. There, the photon

interacts with the sphere’s material and reflects in a new direction but a little dimmer.1 This

process repeats many times. Finally, the photon hits the camera sensor, which absorbs

the photon’s energy, making a small portion of the image a little brighter. Simulating

many such photons eventually produces an image of the scene. Essentially, this process

of particle transport connects a light source to the camera sensor through a number of

interactions (bounces) with objects in the scene.

It is more computationally convenient to consider the process of light propagation from

the localized perspective of a single surface interaction. Typically the mathematical for-

mulation considers a specific surface location and an outgoing direction from the surface

(towards the camera sensor, for example).

2.1.1.1 Radiometric Quantities

The total amount of light that shines onto something is measured as a count of the

total number of photons that hit a detector. The physical unit of measurement of this

energy Q is Joules (J). However, the energy is measured over time (exposure), which can

be used to estimate instantaneous power called radiant flux Φ = dQ/dt
(J/s

)
. Other relevant

radiometric quantities are derived from radiant flux.

The amount of light arriving from all directions at a surface measured at a point is

1Ignoring quantum mechanics, the photon would be absorbed by an outer electron of an atom making up
the surface, exciting the electron to a higher energy level. This electron then decays to a lower energy level
emitting another photon in some new direction. Many photons would undergo this process at the surface.
Some would be absorbed, making the reflection appear dimmer than the original illumination.
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(a) Radiance definition
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(b) Rendering equation

Figure 2.2: Local coordinate frames illustrating the parameters used in the definition of
radiance (a) and the rendering equation (b).

referred to as irradiance E = dΦ/dA
(W/m2

)
, which is radiant flux per unit area. Flux

leaving a surface is called radiant exitance or radiosity B. Considering all energy traveling

along a specific direction is called intensity I = dΦ/dω

(W/sr
)
. An angle in 3D is referred to

as a solid angle, measured in steradians (sr).

Radiance is a measure of light near some location x traveling near some direction ω,

L(x, ω) = d2Φ/dA dω

(W/m2sr
)
. It can be considered as a count of photons traveling within

a solid angle dω from direction ω near a point x landing on a surface dA perpendicular

to the direction ω, Figure 2.2a. Note that one can consider radiance to be irradiance (or

radiant exitance) per unit solid angle or an intensity per unit area. Algorithms simulate

light propagation by tracking radiance throughout the scene.

2.1.1.2 The Rendering Equation

The rendering equation was introduced to the field of computer graphics by Immel et

al. [55] and Kajiya [64] in 1986. The rendering equation computes outgoing radiance from

a specific location along a specific direction based on all possible light interactions at a

surface. The surface can emit light, or it can reflect some of the incident illumination. The

reflection can be computed by a sum of light from all possible directions modulated by a

reflectivity coefficient based on a specific outgoing direction.

Using the local coordinate frame shown in Figure 2.2b, the outgoing radiance Lo(x, ω)

at a surface location x along an outgoing direction ωo can be computed by the following

solid angle formulation:
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outgoing radiance

Lo(x, ωo) =

emitted radiance

Le(x, ωo) +

reflected radiance: sum over all incident directions in hemisphere∫
Ω

fr(x, ωo, ωi)

reflection coefficient

Li(x, ωi)

incident radiance

(ωi · n) dωi (2.1)

The term Le(x, ωo) evaluates the radiance emitted by the surface at a location x along an

outgoing direction ωo. The total radiance reflected from the surface along the direction ωo

is computed by the integral over the hemisphere Ω of incident directions ωi. The integrand

contains three parts. The first, fr(x, ωo, ωi), is the bidirectional reflectance distribution

function (BRDF) which specifies the material properties and computes how much of the

radiance that arrives at the location x from the incident direction ωi is reflected along

the outgoing direction ωo. The second term, Li(x, ωi), specifies the incident radiance

arriving at the location x along the direction ωi. Finally, the term (ωi · n) accounts for

the reduction in the received energy because the surface may be oriented in a way other

than perpendicular to the incident direction ωi. As the surface becomes more angled, the

incident flux is distributed across a larger surface area. The surface orientation is marked

using the surface normal n which is perpendicular to the surface at x. It is generally

assumed that directions ωi, ωo and n are normalized. Note that the presented formulation

ignores any dependency on time, light wavelength, or occlusion of light.

Efficient solutions of the radiance equation are still an active area of research. One

of the issues is that the radiance term L appears within the integrand, requiring iterative

solutions which propagate energy throughout the scene. Before introducing a family of

solutions of the rendering equation, we must describe how scene data is represented digi-

tally.

2.1.2 Describing Virtual Scenes

The entire rendering process is summarized in Figure 2.3. It takes the description of

the virtual scene and produces an image depicting that scene. The scene input typically

describes the virtual objects, their material properties, lights used to illuminate the scene,

and camera(s) used to capture the scene. Scenes can also be dynamic where various

parameters change over time. Once the visible objects are found, their appearance is

simulated, producing colors that are accumulated into the image. Depending on the ren-

dering algorithm, object appearance can account for light inter-reflections, thus making
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Virtual Scene
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object 
descriptions
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Rendering Process Output
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Figure 2.3: A high-level overview of the rendering process, which takes the description of
the virtual scene (left) and produces an image depicting that scene (right).

computation iterative: another search for the closest visible objects and simulation of their

appearance. Section 2.1.3 introduces the ray casting algorithm used to derive a family of

popular rendering algorithms.

One of the properties virtual scene descriptions specify is the physical extent occupied

by each object. Based on how light interacts with an object, it is convenient to classify its

description as a surface or a volume.

Surfaces are encountered most commonly in daily life and often appear as solid with

clear boundaries or edges. Surfaces can be described as two-dimensional interfaces be-

tween media, typically air and a material making up the object. One can choose a par-

ticular mathematical representation of the interface based on the desired properties of the

representation. Some of the common surface representations are shown in Figure 2.4. An

individual element representing an object or part thereof is called a primitive. A common

planar primitive is a triangle, Figure 2.4a. A collection of triangles, referred to as a mesh,

forms a piecewise linear representation of a complex surface, Figure 2.4b. A triangle mesh

does not preserve continuity or smoothness in surface derivatives, therefore making it dif-

ficult to faithfully recreate curved objects. Applications like computer-aided design (CAD)

that require continuity of derivatives define shapes using high-order patch primitives.

Each patch is constructed as a tensor product of high-order polynomials interpolating a set

of control points. Nonuniform rational basis spline (NURB) surfaces, Figure 2.4c, can be

defined using high order Bézier curves [36]. Subdivision surfaces, Figure 2.4d, are defined

by a recursive application of a surface refinement strategy, which, at each application,

subdivides a polygonal input mesh to create new polygons. Although one can directly

use the limit surface created by an infinite number of applications of the subdivision

rule [22, 122], implementations commonly subdivide to a maximum level using triangles
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(a) Triangle (b) Triangle Mesh (c) NURBs Patch (d) Subdivision Surface

Figure 2.4: A few common surface representations. The subdivision surface (d) shows the
result after a single subdivision of the blue cube. The limit surface is a sphere.

and treat the resulting surface as a mesh [11]. The collection of all surface representations

in a scene is referred to as scene geometry.

Volumes, on the other hand, describe objects whose appearance is driven by light

bouncing within the object extent, like clouds or fog. Modeling volumes requires storing

a notion of material density and other physical properties throughout the volume extent.

Since this work focuses on surfaces, volumes are not discussed further. We refer interested

readers to Pharr et al. [105] for details.

A material simulates the appearance of an object by modeling the physical behavior of

light when it encounters the object based on what it is made of, like wood or glass. Material

models are typically derived from first principles. Figure 2.5 shows some possibilities

for how light interacts with a surface. A surface can emit light (Figure 2.5a), giving the

surface a glowing appearance – a cell phone screen for example. Surfaces can also reflect

light (Figure 2.5b) thus redirecting some of the incident energy away from the surface – a

polished metallic ball bearing for example. Surfaces can also transmit light (Figure 2.5c)

thus redirecting some of the incident energy through the surface interface – water for

example. Each of these interactions can be classified further based on their directional

concentration, Figure 2.6. Diffuse interactions spread the energy equally in all directions

(Figure 2.6a), specular interactions concentrate all energy in one direction (Figure 2.6c),

while glossy interactions lie somewhere in between (Figure 2.6b). Complex appearance

can be generated by combining several material models together as layers [59]. This work

uses only diffuse reflective materials because they produce a good test case of the proposed

algorithms and architectures. Please see Pharr et al. [105] for a more in depth discussion of

material models and their derivations.

In addition to the object descriptions, the rendering process also needs a description of
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(a) Emission (b) Reflection (c) Transmission

Figure 2.5: Possible ways light can interact with a surface. The top row shows a diagram
of the interaction, while the bottom row shows an example of the resulting appearance.

(a) Diffuse Reflection (b) Glossy Reflection (c) Specular Reflection

Figure 2.6: Directional concentration classification for reflections. Emission and transmis-
sion are classified similarly. The top row shows a diagram of the interaction, while the
bottom row shows an example of the resulting appearance.

the light sources that illuminate the scene. Common luminaires include the sun, the sky, and

various light bulbs. Much like the objects in the scene, describing the lights requires both

their physical representation (position, surface, etc.) and the illumination profile which

models the positional and directional distributions of the emitted light. Figure 2.7 shows

examples of common lights. Although not physically possible, a point light, Figure 2.7a, is

the simplest: it has no surface and emits all light radially, typically distributed evenly. It
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(a) Point (b) Directional (c) Spotlight

(d) Sphere (e) Area (f) Environment Map

Figure 2.7: Common light models used in rendering. Diagrams at the top of each subfigure
depict the light source with arrows indicating a possible distribution of the emitted energy.
Images at the bottom show an example of the resulting appearance when illuminating a
simple scene.

is specified by a position and an intensity. Directional light sources, Figure 2.7b, are another

extreme. They simulate light that is substantially far away so that all radiance travels along

a specific direction regardless of the spatial position throughout the scene. A spotlight,

Figure 2.7c, mimics lights with a lampshade, where all illumination travels within a given

angle away from a primary direction. Although a conical light is shown as an example, the

cross-sectional shape of the light can be arbitrary. Spotlights can also define a radial falloff
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function to smooth out the edge of the shadow. Most of the physical luminaires have an

emissive surface. Such light sources are called area lights. One of the simplest is the spherical

light, Figure 2.7d, which is defined by a position and a radius. Its simplicity stems from

the fact that a sphere projects onto a circle from all directions, making it easy to use during

rendering. Area lights can also have arbitrary shapes with the surface defined by geometric

primitives. Figure 2.7e shows a simple rectangular area light. Finally, an environment map

light defines the illumination arriving from far away from a (hemi)sphere of directions.

One type of the environment map is a 360 degree image captured at a real-world location.

Other environment maps use analytic models to imitate sky illumination (the sun can be

modeled separately) and can incorporate parameters like the time of day, latitude, etc. This

work relies only on point lights because of their simplicity. Please see Pharr et al. [105] for

a more in depth discussion on light models.

Finally, the rendering process requires the details of the camera used to capture what

the scene looks like. Camera models mimic the real-world equivalents, which can be

parameterized using position, orientation, aperture, shutter speed, etc. Depending on the

use-case, camera models can range from a simple pinhole to a fully realized optical system.

Although this work is somewhat agnostic to the camera model, we rely on the pinhole

camera model because of its simplicity. Please see Pharr et al. [105] for more details.

2.1.3 Ray Casting

We introduce a single family of rendering algorithms that relies on geometric optics to

solve the rendering equation by iteratively computing how light bounces within a scene.

Simulation using geometric optics ignores wave-like behavior of light including diffrac-

tion, interference, and polarization. Light propagation is modeled by infinitesimally thin

semi-infinite geometric rays that represent the path taken by light. Each ray is represented

by an origin (a point in 3D) and a direction (a vector in 3D). Modeling a bounce of light

requires searching the scene for the object that is closest to the ray origin along the ray’s

direction. We refer to the position of the intersection between a ray and a primitive as the

hit point, which can also contain a description of the surface material properties. We refer

to the process of finding the closest primitive representing a surface as ray casting because

it casts a ray into the scene to find a hit point. A simple image of the scene can cast a single
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(a) Ray casting (b) Adds shadows (c) Adds reflections and refractions

Figure 2.8: Casting rays to generate different images of a simple virtual scene. The top row
illustrates types of rays that are cast, and the bottom row shows the resulting image.

ray for every pixel to show the surface appearance, Figure 2.8a.

Such images lack important visual details like shadows or reflections and thus do not

look realistic. One can simulate these effects by casting more rays, each generated at

the hit points derived from the previous ray casting step. To simulate shadows, one can

simply cast a shadow ray towards the light source. If the shadow ray hits any surface before

reaching the light, then the hit point is considered in shadow and receives no contribution

from the particular light. Figure 2.8b shows the result of casting shadow rays. Reflections

and refractions rely on additional rays to query how much light would arrive at a hit point

from the direction of the reflection or refraction. Computing this amount of light requires

yet additional rays to be cast, Figure 2.8c.

What makes ray casting so powerful is the ability to derive a variety of sophisticated

image generation methods from it. One can keep iterating between casting rays to compute

the closest hit points and using the material properties of the hit surfaces to decide which

set of rays to cast next. Each iteration models a single light bounce. The derived image

generation algorithms can be separated based on when and how the secondary rays are

generated and how their results are used.
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(a) Global Illumination (b) Direct Illumination (c) Indirect Illumination

Figure 2.9: Global illumination (a) fully simulates light propagation in a simple scene.
It can be separated into direct illumination (b), where all lights contribute illumination
directly without interacting with any other objects in the scene, and indirect illumination
(c), where light arriving at any surface must interact with other objects first.

2.1.4 Path Tracing

Introduced by Kajiya in 1986, the path tracing algorithm [64] can faithfully simulate light

propagation and produce images indistinguishable from reality. The basic implementation

can handle incredibly complex scenes and is fairly straightforward.

At any particular hit point, it helps to separate light into two components: direct and

indirect illumination. The direct illumination component, shown from the point of view of

the camera in Figure 2.9b, only considers the light that arrives onto the surface from all

light sources directly, without interacting with any other surfaces. This includes shadows,

but not reflections or refractions. The indirect illumination component, shown from the

point of view of the camera in Figure 2.9c, considers all other light paths which include

at least one bounce in the scene immediately after leaving the light source. Notice that

the ceiling painted white receives red light reflected from a wall nearby, which acts as an

indirect source of light. As a result, the white ceiling appears tinted red closer to the red

wall and appears tinted blue closer to the blue wall. Color bleeding is one example of

indirect illumination.

The combination of both direct and indirect illumination components computes global

illumination, shown in Figure 2.9a. Global illumination encompasses simulating all pos-

sible interactions light can have between all surfaces over great distances. One example

of global illumination is a room illuminated by an exterior light source through a slightly
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(a) Primary Rays (b) Shadow Rays (c) 1 bounce GI (d) 10 bounce GI

Figure 2.10: Using a path tracing algorithm to simulate global illumination (GI). The top
row illustrates the behavior of light and the bottom row illustrates the effect on a sample
scene. Note that nth bounce produces light paths that are at most n + 1 in length.

open door. An important strength of the path tracing algorithm is that it can simulate

global illumination by solving the rendering equation.

Although not difficult conceptually, simulating global illumination requires an exten-

sive amount of computation. In essence, one needs to simulate a subset of all light paths

that connect the camera to all lights in the scene. Each light path represents several bounces

a single light particle has taken between objects in the scene before arriving at the camera.

Each light path is built from rays that connect hit points throughout a scene. In fact, the

true number of paths and bounces is unbounded. The path tracing algorithm samples

this set of possibilities by iteratively casting rays into the scene starting from the camera.

Figure 2.10 illustrates the process. First, based on the camera, the algorithm generates a

primary ray through each pixel in the image. Then the algorithm casts each primary ray

into the scene to find which objects are the closest (Figure 2.10a). All of these objects are

visible to the camera and appear in the image. For every hit point, the algorithm computes

how much direct light is reflected from the hit surface by tracing shadow rays towards

lights in the scene and applying the material properties of the hit surface (Figure 2.10b). To

simulate the indirect illumination arriving at the hit point, the algorithm picks a random

direction where the light could arrive from, casts another (secondary) ray in that direction,

and shades the corresponding hit point (Figure 2.10c). Repeating this process iteratively
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computes light paths of increasing length that connect the camera to the light sources in

the scene. The algorithm stops iterating once the maximum light path length is reached.2

Figure 2.10d shows the final image after ten iterations (light bounces). The described

algorithm is called a Kajiya-style path tracer [27, 64], pseudo-code for which is shown in

Algorithm 2.1.

Please note that reproducing the exact light paths would require simulating an infinite

number of them. Path tracing relies on random sampling techniques to generate only a

subset of all possible paths [27]. As more ray paths are traced, the image slowly converges

to the ground truth. An image indistinguishable from the ground truth image requires

many rays and a lot of computation time. Thus, this description is meant only for a high-

level understanding of the process, and omits optimizations, sampling, and integration

techniques. We refer the interested readers to Pharr et al. [105] for details on this and other

sophisticated rendering algorithms.

2.1.5 Ray Traversal and Intersection

This work focuses on accelerating the ray intersection phase of the path tracing al-

gorithm, referred to by the function call scene.Intersect(ray); on lines 7 and 14 in

Algorithm 2.1. Given a ray, this phase searches through the scene primitives to find the

closest one to the ray origin by computing ray-primitive intersections.

The simplest way to test whether any object intersects with a ray is by iterating over

all primitives making up all of the objects in the scene. However, scenes used in film pro-

duction contain billions of triangles, making any algorithm that tests all of the primitives

for every ray prohibitively expensive. A film quality image at a 4K resolution (3840× 2160

pixels) could require up to 2 · 1019 intersection tests, which is astronomical. As a result,

scene geometry is placed into an acceleration structure, which is an additional data structure

designed to significantly reduce the number of ray-primitive intersection tests and thus

the computational cost of the intersection phase. The process of searching through the

acceleration structure is referred to as ray traversal.

2If the maximum path length is set too low, rendering can miss important inter-reflections between specular
objects and produce an incorrect image. The refractive sphere in Figure 2.10c appears black because the
paths are not long enough to allow for the second refraction on the other side of the sphere. An alternative
technique, called Russian Roulette [7], can be used to statistically stop iterating based on the probability that
the illumination simulated by a ray is absorbed at a particular hit point.
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1 foreach pixel in image do

// generate a primary ray

2 rayDepth = 0;
3 color = black;
4 thruput = white;
5 ray = camera.GenRay(pixel);

// loop until ray reaches max path length

6 for rayDepth < max depth do

// find closest visible object for ray. Figure 2.10a

7 hitInfo = scene.Intersect(ray);

// ray missed everything

8 if not hitInfo.didHit then
9 color = color + thruput * background color;

10 break;
11 end

// ray hit an object - compute direct illumination by casting

shadow rays. Figure 2.10b

12 foreach light in scene do

13 shadowRay = light.GenShadowRay(hitInfo.pos);
14 shadowHitInfo = scene.Intersect(shadowRay);

// shadow ray missed - hit point is illuminated. Apply

material properties

15 if not shadowHitInfo.didHit then
16 brdf = hitInfo.EvalMatl(hitInfo.pos , ray.dir , shadowRay.dir);
17 color = color + thruput * light.color * brdf * cos ;
18 end
19 end

// compute indirect illumination by casting ray for next bounce.

Figure 2.10c

20 oldRayDir = ray.dir ;
21 ray = hitInfo.GenBounceRay();
22 rayDepth = rayDepth + 1;
23 thruput = thruput * hitInfo.EvalMatl(hitInfo.pos , oldRayDir, ray.dir);
24 end

// write output pixel color

25 image.SetPixelColor(pixel, color);
26 end

Algorithm 2.1: Pseudocode for the Kajiya-style path tracing algorithm.
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The path tracing algorithm depends on two types of ray traversal. The closest-hit traver-

sal searches for the primitive in the scene that is the closest to the ray origin along the

ray direction. The closest-hit traversal keeps only the closest ray-primitive intersection hit

point from many that may be found and sorted. Any-hit traversal can terminate once a hit is

found, avoiding unnecessary intersection tests. Any-hit traversal applies to visibility queries

which test whether two points in the scene are visible to each other with no primitive

occluding one from the other. For example, shadow rays use any-hit traversal to test if any

primitive blocks illumination onto the hit point that generated the shadow ray. The same

acceleration structure can accommodate both types of traversal. When the acceleration

structure deems no further hits need to be found, the traversal can be stopped resulting in

early ray termination.

2.1.6 Acceleration Structures

Acceleration structures significantly reduce the number of intersection tests during

rendering because they help avoid testing primitives that are guaranteed to miss the ray.

Traversing any acceleration structure comes at an additional cost because it can require

intersecting the ray against other special primitives. Therefore, to be beneficial compu-

tationally, the acceleration structure design must balance the savings from reducing the

number of ray-primitive tests with the additional costs incurred by traversal.

All acceleration structures can be designated based on what they partition: space or

objects.

2.1.6.1 Space Partitioning

Space partitioning schemes segment the volume the scene occupies into nonoverlap-

ping regions. Primitives are then sorted and filtered into corresponding individual regions

of the acceleration structure. A ray then marches from region to region and tests only the

primitives referenced within visited regions. If there are no primitives within a region, the

ray simply continues onto the next one, potentially skipping large empty volumes. The

traversal can stop once a hit is found, as long as it is contained within the specific region.

The traversal can also stop early if the distance along the ray to the hit point is closer than

the bounds of the next region to be visited.

A downside of all space partitioning schemes is that primitives may span several re-
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(a) Grid (b) Octree (c) Kd-Tree

  

  

(d) BVH (e) BIH

Figure 2.11: Two-dimensional representations of common acceleration structures. BVH
stands for bounding volume hierarchy, and BIH stands for bounding interval hierarchy.
Different colors represent different levels in the hierarchical structures: black is top, blue is
one level down, and red is two levels down.

gions. As a result, the primitives need to be either split at region boundaries, generating

new primitives [33], or the primitives need to be referenced multiple times within the accel-

eration structure, once for every region that contains the primitive. Both of these solutions

result in higher memory use. Another problem with duplicate primitive references is that

a ray may intersect with the same primitive multiple times, which can be mitigated by

using a mailbox [73]. For each multiply referenced primitive, it stores a reference to the

primitive and an index for the ray that intersected it last.

Because space partitioning schemes not based on trees may not adapt well to variations

in primitive density, a subset of their regions may reference a significantly larger number

of primitives than other regions, making that subset much more expensive to test against.

As a result, ray traversal and intersection performance is not as efficient as it could be.

Grid A uniform grid [26] simply subdivides the scene bounding box into a regular

grid of volumetric cells, called voxels. Figure 2.11a shows an example of a grid acceleration

structure. Each voxel contains a list of all primitives it overlaps with. A ray traverses

through this structure using discrete differential analyzer, originally developed to draw

lines on pixel displays [17]. The method relies on small constant increments to step from

one voxel directly into the next one. Grids can be nested recursively to achieve better

performance than regular grids [63], but the maximum number of nested subdivisions is

typically set before the structure is built. For a complete performance analysis, see Ize et

al. [56]. Havran briefly describes two other types of grids, hierarchy of uniform grids and

adaptive grids [49].

Octree An octree [41] is a tree-based space partitioning scheme, where each level

can be split into eight subregions of equal size along the center of the level’s region,
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Figure 2.11b. Each region is stored as a node in the tree. Octrees can adapt to nonuni-

form distributions of primitives throughout the scene much better than uniform grids can.

Octrees can be considered a special case of a recursive grid. Traversing this data structure

requires maintaining a stack of nodes that a ray will visit next.

Recent work embeds two planes, called contours, into each octree node [78, 79]. The

contours approximate and constrain the surface within the node. Contours can be used

as a proxy surface geometry in some cases and intersected directly, improving ray casting

efficiency without a loss in visual fidelity.

Kd-Tree One of the most popular acceleration structures used in ray tracing is a kd-

tree [12, 49, 124]. Each node in the tree is split into two by a single axis-aligned plane,

Figure 2.11c. Allowing the tree to become deep enough, this acceleration structure can

adapt to nonuniform distributions of primitives. Kd-trees were popular in the early 2000s

because each node is compact to store and bounds are tight, thus leading to fast traversal.

However, building kd-trees has proven to be not as efficient as more modern acceleration

structures. Kd-trees can be considered a special case of a binary space partitioning tree [98]

which also splits space into two parts per node but using an arbitrarily oriented plane.

Kd-trees are typically built in the top-down fashion using a heuristic to approximate

ray traversal performance [54, 108, 134]. At each step, all primitives are sorted and binned

along each axis, and then one bin boundary is selected as the location for the splitting

plane based on the greedy optimization of the heuristic cost. The splitting plane could

also be used to carve out empty space producing a node with no primitives, which can

considerably reduce unnecessary traversal and intersection tests [49].

Traversing a kd-tree involves marching the ray through each node’s children visiting

the one closest to the ray origin first. If a hit is found within a node, it is guaranteed to

be the closest and traversal can stop because nodes do not overlap. Traversing from one

node to another revisits nodes higher up the tree, which requires for each ray to maintain a

traversal stack of nodes to be visited. The overhead of maintaining the traversal stack can

be reduced by linking nodes to their siblings with ropes [50]. The traversal stack requires

memory for storage, which may prohibit tracing many rays in parallel. It is possible to

avoid storing the stack explicitly, which is well suited for architectures that do not provide

much memory per thread like modern graphics processors [109].
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Because of the build times, kd-trees are no longer the popular acceleration structure for

ray tracing. They are still used for rendering algorithms that rely on the nearest-neighbor

search queries for points [47, 61, 62].

2.1.6.2 Object Partitioning

Object partitioning schemes build a tree separating primitives into groups rather than

the volume they occupy. Each node in the tree bounds the volume occupied by its children

nodes, and typically each primitive is referenced once. These schemes easily adapt to

variations in primitive density.

Bounding Volume Hierarchy A bounding volume hierarchy (BVH) [41, 65, 133] bounds

all primitives within the scene by an n-wide tree of nodes, Figure 2.11d. Each node in the

tree stores a bounding volume which encloses the volumetric extent of all of its children and

thus primitives within. Although trees are typically binary, several levels of the tree can be

combined together into a single n-wide node. Wider trees can utilize the vector processing

hardware architectures more efficiently.

During traversal, if the ray misses the bounding volume of a node, there is no need to

test that ray against any of the node’s children, avoiding unnecessary primitive intersec-

tion tests. For efficiency, intersecting the bounding volume representation must be much

cheaper than intersecting a small number of primitives. Axis-aligned bounding boxes

(AABBs) are a common choice, but other bounding volumes like spheres or polyhedra

have been considered in the past [65]. The intersection test between a ray and an AABB

requires six ray-plane intersections3 and a few comparisons [139]. AABBs work best for

axis-aligned primitives and fail to create tight bounds when primitives are oriented off

axis – a rectangle oriented at a 45 degree angle for example. Many rays that intersect

with the large bounding box will likely miss the rotated rectangle inside, leading to un-

necessary node visits. One benefit of BVHs is that primitives stored within are referenced

exactly once, unless the BVH derives tighter bounds by using split planes, duplicating

some primitive references [123].

Popular BVH builders work in a top-down fashion relying upon the similar heuristic

3Each dimension requires two plane intersections: one for the minimum and another for the maximum
bound of the AABB. Each intersection between a ray and an axis-aligned plane can be expressed as a single
one-dimensional fused multiply-add operation.



22

as the top-down builders for kd-trees. Once the partitioning plane is selected, primitives

are separated into two sets based on which side of the axis-aligned plane each primitive

falls into. Then the two child nodes are created, one per partition, each with the bounding

volume encompassing the primitives within. The sibling bounding volumes can overlap

and the child volumes do not necessarily fill the parent’s volume, leaving some empty

space carved out.

Approaches that build the tree from the bottom up can produce higher quality trees.

Each primitive is first bounded directly, forming a single cluster. Recursively, pairs of near-

est clusters are combined together into individual clusters until the final single cluster is

created [138]. Each cluster then forms a node in the BVH. Agglomerative build approaches

require nearest-neighbor searches, which have high computational overhead. As a result,

more recent approaches approximate the nearest neighbors [31, 46, 91].

Tree traversal starts from the top node. Each node’s bounding volume is tested against

a ray, and if intersected, the ray continues to traverse the children nodes. A common

optimization is to traverse the node closest to the ray origin first. Also ray traversal can

stop if a hit is found closer than a node’s bounding volume. However, because bounding

volumes can overlap, a ray may have to visit the node’s sibling even if a hit was already

found.

BVH trees with AABBs are such a popular acceleration structure that they are com-

monly used by the major film rendering software, like Arnold [40], RenderMan [25] or

Hyperion [20], as well as the real-time ray tracing APIs, like OptiX [102] or Embree [137,

141]. As a result of this popularity, there are many variations of the BVH acceleration

structure. Please see Section 3.1.2 for recent work on BVHs.

Bounding Interval Hierarchy A bounding interval hierarchy (BIH) [131] is a binary

tree where each node partitions space using two rather than six axis-aligned planes, Fig-

ure 2.11e. Both of the planes lie along the same axis and form two bounding intervals

in one dimension. One interval bounds the left child node, where the plane stores the

maximum bounds of the child node and the parent node provides the minimum bound.

The other interval bounds the right child node, where the plane stores the minimum

bound of the child node and the parent node provides the maximum bound. When the

bounding intervals overlap, they represent overlapping bounding volumes of children
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nodes. Nonoverlapping bounding intervals represent empty space in between children

nodes along a given axis.

The acceleration structure traversal exhibits behaviors similar to both a BVH and a

kd-tree. Determining which child node is closer to the ray origin, making early ray ter-

mination effective, relies on the axis encoded in each node directly. When the sign of the

ray direction along the appropriate axis is positive, the left child is closer to the ray origin

and should be traversed first. The negative sign of the ray direction signifies that the right

child is closer. While kd-trees are traversed this way, enabling similar behavior in the BVH

requires additional storage per node. Similar to a BVH, one may need to traverse both

child nodes of the BIH after a hit is found because child node intervals can overlap.

BIHs are not used in the rendering software because they suffer from issues similar to

kd-trees. The acceleration structure requires deep trees to adapt to the scene data. Many

rays traversed in parallel can diverge, loading data from different acceleration structure

nodes scattered throughout memory, which strains the memory system. As discussed later,

certain types of memory accesses are costly and effecient memory use is paramount for

performance.

2.1.6.3 Estimating Acceleration Structure Quality

Acceleration structures can significantly reduce the number of primitives each ray must

intersect during traversal. Ideally, the acceleration structure partitions all primitives op-

timally to minimize the number of intersection tests per ray on average. In practice, we

must rely on quality heuristics to generate acceleration structures that reduce computation

time spent on traversal and intersection.

One popular heuristic used to estimate quality of each acceleration structure is the

surface area heuristic (SAH) [43, 49, 88]. SAH combines the probability that a ray hits a

particular node of the acceleration structure with the costs to intersect against primitives

inside. SAH assumes that a ray originates outside the scene volume and travels along a

random direction without stopping anywhere within the scene volume. Lower SAH cost

values are considered better because they should lead to lower time spent on traversal and

intersection during rendering.

Given a volume bounding the primitives in a scene, we can create an acceleration
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Figure 2.12: Using the SAH cost to decide whether to make a node T into (a) a leaf or into
(b) an internal node with two child sub-nodes L and R. The node contains four triangles,
shown in red. The black line outlines the AABB of the node T. A dashed line on the right
represents one possible splitting plane, p.

structure comprised of internal and leaf nodes. Internal nodes reference other nodes as chil-

dren, and leaf nodes contain references to primitives. The quality of an entire acceleration

structure can be approximated using the following cost metric, which is a sum of traversal

and intersection costs weighted by the probability that a ray can enter a particular node:

CT =
1

SA(scene)

[
CTI

NI

∑
i=1

SA(i) + CTL

NL

∑
l=1

SA(l) + CI

NL

∑
l=1

SA(l)N(l)

]
, (2.2)

where SA(n) computes the surface area of a node n, i is ith interior node and l is lth leaf

node. Counters NI and NL count the total number of interior and leaf nodes respectively.

The costs CTI and CTL correspond to the run-time costs to traverse an internal and a leaf

node respectively. The cost CI corresponds to the cost to intersect against a primitive, like

a triangle. Finally, the number of primitives in a leaf node l is given by N(l).

The builder of tree-based acceleration structures can rely on the SAH metric to estimate

whether it is best to make a node an internal node, splitting it into sub-nodes, or to make

it into a leaf node. Illustrated in Figure 2.12, the cost of each decision is evaluated via the

following formulation:

Clea f (T) = CIN(T) (2.3)

Cinterior(T, p) = CTI +
CI

SA(T)
[
SA(L)N(L) + SA(R)N(R)

]
, (2.4)

where a plane p splits the current interior node T into a left L and a right R child sub-nodes.

The costs CI and CTI correspond to the the cost of intersecting a primitive and traversing

a node respectively. The surface area of a given node n is evaluated by SA(n). The counts
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N(n) correspond to the number of primitives in a node n. Because some primitives can

be referenced in both child sub-nodes, note the following relationship between primitive

counts per node: N(T) ≤ N(L) + N(R).

Unfortunately, because the assumptions SAH makes about rays are unrealistic, the

SAH cost values do not perfectly correlate with the quality of an acceleration structure

(how fast the ray traversal is) [2]. Not all ray types result in purely random distributions.

Primary rays are highly correlated, but, after a few bounces, the secondary rays become

more random. The SAH metric also assumes all ray origins are located outside of the scene

bounding box, however, in practice, majority of rays start from within the scene.

2.2 Computer Architecture
This work relies on the fundamentals of computer architecture to design dedicated

hardware architectures aimed to accelerate the path tracing algorithm. This section only

introduces the concepts used throughout the thesis; please see Hennessy et al. [52] for more

details. We discuss only the following two components of architecture design: computa-

tion and memory. We assume that the necessary data has been loaded into the machine

ahead of the computation and ignore the input/output portion of computing systems.

There is a wide range of programmability in chips used for data processing. At the one

extreme are processors designed for specific use case and nothing else, called application

specific integrated circuits (ASICs). These processors encode the required processing func-

tions directly in digital logic on chip and thus are extremely energy efficient and fast at their

specific task. At the other extreme are fully programmable general-purpose processors,

which can read and execute a sequence of provided operations of programmable architec-

tures. They trade off flexibility for effeciency because flexibility requires certain architec-

tural components that add energy and latency when compared to dedicated ASICs. Pro-

grammable architectures can also exploit dedicated hardware components to effeciently

accelerate specific tasks that are common like video encoding and decoding for example.

Microprocessors, central processing units (CPUs), and graphics processing units (GPUs)

are examples. Field programmable gate arrays (FPGAs) fall in between the two extremes

because they can emulate digital logic elements that an ASIC would implement in silicon

directly but can be reconfigured for any specific application. The performance and energy
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efficiency of FPGAs lies in between ASICs and general-purpose processors. Although pro-

grammable and efficient, configuring FPGAs is more difficult than programming general-

purpose architectures.

Programmable processors execute a program, which is a stream of commands each

represented as individual instructions. Instructions can include simple arithmetic, like

addition, or can be specifically tailored for an application, like intersecting a given ray

with a given triangle. The instruction set architecture (ISA) defines all the instructions that a

particular machine can execute, and how to encode each instruction along with its inputs

and outputs in a machine-readable (binary) format.

We refer to the smallest single processing unit as a hardware thread or a processing core. A

machine with a single thread is called a uniprocessor, while machines with multiple threads

are called multi-core processors. We refer to the physical realization a processor architecture

as a single chip.

2.2.1 Types of Parallelism

Applications can enable concurrent processing through two types of parallelism. One

type is data-level parallelism, where many data items can be processed at the same time.

The other type is task-level parallelism, where work can be decomposed into parts that

can operate independently of others and at the same time. At a coarse level, hardware

can exploit these two types of parallelism in several ways [37, 52]. Single instruction stream,

single data stream classifies a uniprocessor which executes a single sequential program on

a single sequence of data. Single instruction stream, multiple data streams (SIMD) classifies

architectures that execute the same instruction stream using several individual processor

threads each operating on a different data stream. All threads in a SIMD architecture

execute the same instruction at the same time. Multiple instruction streams, multiple data

streams (MIMD) is the most general application of parallelism. MIMD architectures can be

thought of as a collection of uniprocessors or threads, each executing its own program on

its own data stream.

Recent architectures exploit parallelism by combining SIMD and MIMD processing.

Single instruction stream, multiple threads (SIMT), common in recent GPUs, operates on a

block of processing threads called a tile. All threads in a tile operate in a SIMD fashion,
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however each tile within the GPU can execute its own program called a kernel. Moreover,

GPUs can process more data, gaining efficiency, by dynamically switching which kernel

of several is executed by each single tile. In a single program, multiple data streams (SPMD)

type of architectures all threads execute the same program but on different data streams.

Unlike SIMD, each thread can execute a different instruction within the single instruction

stream. Note that, although similar to MIMD, SPMD executes only a single program.

2.2.2 On-Chip Computation

The architectures presented in this work rely on a reduced instruction set computer

(RISC) instruction set [24, 103, 104]. RISC reduces the number of cycles spent per instruc-

tion by significantly simplifying the ISA. The key properties of the RISC ISA are three-fold.

First, data operations work on data stored in registers and each operation changes the en-

tire register. Secondly, the only memory operations allowed are load and store operations

that fetch data between the memory system and thread registers. Finally, there are only

a few binary formats for instructions and all instructions are of the same size, 32 bits for

example. The instruction latency is the number of processor clock cycles it takes to execute

an instruction to completion. The complexity of the digital logic implementation of the

instruction functionality dictates this latency.

The average time it takes to execute an instruction can be reduced by using a pipeline,

which is composed from several stages. The pipeline with n number of stages should

reduce the time per instruction by a factor of n because each stage can execute simul-

taneously and with a separate instruction. The longest time between different stages is

typically set to the processor clock cycle time so that each stage can complete execution

within one clock cycle of the processor. Thus pipelines reduce the processor clock time

compared to nonpipelined architectures. Note that an instruction with the latency of 30

cycles can be fully pipelined, thus computing a new result on every cycle.

One simple pipeline involves five stages, shown in Figure 2.13a. The first stage is

the instruction fetch (IF) stage which fetches the current instruction from memory and

advances the program counter which tracks which instruction in the program to execute

next. The next stage is the instruction decode (ID) stage, which decodes the binary repre-

sentation of the instruction and reads the inputs from the appropriate registers. The third
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IF ID EX MEM WB

(a) Pipeline stages arranged in order. Ignores pipeline optimizations or connections to on-chip memory units.

Clock  Cycle

In
st

ru
ct

io
n

St
re

am

instruction i IF ID EX MEM WB

instruction i + 1 IF ID EX MEM WB

instruction i + 2 IF ID EX MEM WB

instruction i + 3 IF ID EX MEM WB

instruction i + 4 IF ID EX MEM WB

1 2 3 4 5 6 7 8 9

(b) Instructions flowing through the pipeline. A new instruction is fetched at every row (from top to bottom).
Every instruction takes 5 cycles to complete execution (from left to right). Each column shows which stage of
the pipeline is executing each instruction.

Figure 2.13: An example five-stage pipeline for a RISC processor. Stages are abbreviated
by: IF is instruction fetch, ID is instruction decode, EX is execution, MEM is memory
access, and WB is write-back.

stage is the execution (EX) stage, which performs the operation dictated by the instruction.

Memory instructions compute the data address, while arithmetic instructions operate on

the registers provided by the previous ID stage. The fourth stage is the memory access

(MEM) stage, which either reads data from or writes data into the memory system. The

final stage of the pipeline is the write-back (WB) stage, which writes the result of the

instruction into the output register.

Figure 2.13b shows the concurrent execution of several instructions as they pass through

the example five-stage pipeline. Each instruction is fetched at every sequential cycle.

Assuming each pipeline stage takes a single cycle to execute for all instructions in the

ISA, an instruction that enters the pipeline on cycle c completes its execution on cycle

c+ 5. However, the effective instruction latency can be higher if the pipeline stalls between

different stages. A stall pauses the execution of a stage because it cannot pass its data

forward to the next stage in the pipeline. All instructions in the preceding stages would

also incur an additional cycle of latency for every cycle the pipeline stalls. The simplest

example of a pipeline stall is a stall in the IF stage, which delays the instruction being

fetched by a cycle. A more complex example is a data stall where the next instruction
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needs to use the output of the current instruction. As a result, the pipeline has to stall

in the ID stage until the WB stage for the current instruction completes, so that the next

instruction can read the data it needs. Data stalls can be addressed by connecting stage

outputs to the inputs of the prior stages to avoid waiting for the WB stage to complete.

Pipeline hazards like these and solutions to them are outside the scope of this introduction.

Please see Hennessy et al. [52] for more details.

The example five-stage pipeline describes a simple in-order execution that sequentially

executes each instruction in the stream. One can improve the number of instructions

executed per cycle by executing instructions out of order. Out of order processors consider a

small sliding window of instructions in the stream. Once an instruction within the window

has all of its inputs available, it can be executed. Because memory access instructions

can change the data currently stored in registers, they must be handled carefully. For

example, the processing thread can avoid stalling the pipeline while waiting for a memory

load instruction to return and instead execute arithmetic instructions that appear later

in the program stream and that do not rely on data to be loaded. The improvement in

performance comes at the cost of increased architectural complexity and used chip area.

Because this thesis relies on an in-order pipelined SPMD architecture, we do not discuss

the out-of-order processor architectures. Please see Hennessy et al. [52] for details.

2.2.3 Memory Subsystem

The memory subsystem of any architecture feeds the computational units with data so

they can perform useful work. The thread pipeline sends data directly to computational

units after it is fetched from a register file, which is a small collection of registers. Each

register stores a small piece of data between 32 and 256 bits in size and provides access

within a single cycle latency. Because the on-chip area is a precious resource, register files

are limited to store only a few dozen of registers.4 At the other extreme lies the main

memory, which offers a large data storage located off chip. While it is significantly slower

per access than the register file (100s of cycles), it is much faster than other sources of

data like disk storage. The main memory is implemented using dynamic random access

4CPU and GPU architectures that can execute several kernels at once require a larger number of registers
per thread to be able to save and restore the kernel state.
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Figure 2.14: An example of a memory hierarchy with two levels of caches below the main
memory. Blue lines indicate bidirectional data connections. DRAM implements the main
memory located off-chip. We consider the Memory Controller a part of the DRAM system,
although it is located on chip. L2 and L1 represent level-2 and level-1 caches. RF is the
register file for every hardware Thread in the machine.

memory (DRAM) which is built from dedicated memory chips and is located near the

processor chip. As a result, the rest of the memory system is designed to facilitate moving

data between the large slow off-chip memory and small fast on-chip registers. Traditional

memory systems are designed hierarchically where each level holds an increasing amount

of data with higher access latencies and shares access between more computational cores,

Figure 2.14. Data requests flow from each thread up the memory hierarchy until they reach

the main memory.

2.2.3.1 Caches

Every level in the hierarchy between the register file and DRAM is called a cache be-

cause it stores a portion of recently accessed data. In a perfect world, main memory

would provide a spacious data store that is accessible within a single cycle of latency.

Unfortunately, data storage is either fast and small (on-chip memory) or a slow and large

(DRAM). Thus on-chip caches which respond with much lower latency than DRAM can

only store a small subset of the data stored in main memory. The limitation of storing only

a subset of data results in architectural complexity: in both the design of caches and their

operation as well as the entire memory hierarchy itself.

Caches are designed to fetch, store, and provide the requested data based on its mem-

ory address. When a data request is received, the cache first checks if the data is contained

within. If contained in the cache, a cache hit, the piece of data is returned from the cache.
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Otherwise, if not stored within the cache, a cache miss, the data is fetched from the cache

or the main memory located at the next level in the hierarchy. Caches operate on blocks of

data typically 64 bytes in size, called cache lines. Because the lowest level cache serves the

register file, it can support word-sized accesses, typically 32 or 64 bits in size.

The efficiency of a cache is measured by its hit rate, computed as the percentage of all

data requests that result in a cache hit. The higher the hit rate the faster data is returned

because fewer requests reach a higher level cache which adds extra access latency. Small

improvements in the cache hit rate can result in sizable reductions in latency per data

access, which is linearly correlated with the miss rate computed as (1− hit rate). Increasing

the hit rate from 98% to 99% reduces the miss rate from 2% to 1%, thus halving the effective

access latency and potentially doubling the chip performance. As a result, caches are

tuned to have the highest possible hit rates (lowest possible miss rates) across a variety

of applications, the behavior of which is typically approximated using comprehensive

software performance benchmarks like SPEC [53].

There are several approaches that improve memory system performance. The first

approach increases the cache line size in the architecture. Larger cache lines take advantage

of the spatial locality of data, where accessed data is located nearby in memory address

space. An array of numbers exhibits high spatial locality, while a linked list of objects may

not. However, a cache of a fixed size would contain fewer cache lines, which could lead to

an increase in the miss penalty. The miss penalty is defined as the latency cost incurred upon

a cache miss, including the costs at all levels of the hierarchy above the current cache level.

Another approach to increase the hit rate increases the cache size to fit more data, thus

increasing the probability that the requested data is located within. Unfortunately, this

approach increases the access latency and power used by the cache because of how caches

are built in silicon. The third and popular approach relies on a multi-level hierarchy of

caches to reduce the miss penalty. Because of the relationship between capacity and speed,

where the larger caches are slower, and the fastest cache not being large enough, architects

can make use of a number of cache levels each with increasing capacity and hence lower

performance. The lowest-level cache, called the level-1 (L1) cache, is the closest to the

hardware threads and can provide data to the register file with a single cycle latency.

However, the speed and the placement of L1 caches limits their size, 32KB is typical for
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CPUs for example. Thus a slower level-2 (L2) cache with more capacity is used to capture

all of the L1 cache misses. Without the L2 cache, the L1 cache misses would reach the main

memory directly adding significant additional latency and increasing the miss penalty.

Recent CPU architectures rely on three to four levels in the cache hierarchy below the

main memory.

The cache miss rate can also be reduced by increasing the cache associativity, which

dictates where the cache can internally store a cache line. A direct-mapped cache has no as-

sociativity and statically maps cache line addresses to fixed locations in its internal storage.

One can use the least significant bits of the cache line address to compute the target location

in the cache: (cache line address mod cache capacity), where cache capacity is measured

in the number of cache lines. Note that this function maps every cache line separated

by a stride to the same internal storage location. Although very simple to implement in

hardware, the performance of direct-mapped caches suffers when the data requests can

alternate between two addresses spaced apart perfectly. Every data request would result

in a cache miss because it replaces data stored previously, incurring unnecessary access

latency. A fully associative cache can place each requested cache line anywhere within,

thus such caches do not suffer from the alternating data access pattern. After the first

two cache misses that pull both addresses into the cache, both pieces of data would be

available immediately. Such caches require more hardware resources to implement. A

set-associative cache allows a fixed number of locations where a requested cache line can be

stored. A set is a group of cache lines internal to the cache that acts in a fully associative

manner, so that a requested cache line that maps to a specific set can be placed anywhere

within that set. A cache with n cache lines in each set is called n-way set-associative. It

applies the following mapping from a cache line address to a set: (cache line address

mod number o f sets). After calculating the set where the cache line maps to, data requests

check if the set contains the requested address. Keeping the on-chip area the same as

a direct-mapped cache, the n-way set-associative cache has an addressable size that is

reduced by a factor of n because each set can store n cache lines. Typical values for the

set size are 2, 4, and 8, selected based on the tuning of the memory system for each specific

architecture.

Associative caches can rely on a cache line replacement policy to improve the hit rates
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further. The replacement policy dictates which cache line in a set is evicted from the

cache and is replaced by the new cache line. The random replacement policy selects a

random cache line to replace so that evictions are spread out uniformly throughout the

set. The least recently used (LRU) replacement policy attempts to keep the most recently

used data in the cache. LRU attempts to exploit the temporal locality of data: data that

was accessed recently is likely to be accessed again. The policy counts accesses to each

cache line and replaces the cache line that was accessed least recently. Faithful hardware

implementations of the LRU are complex, so architects rely on the first-in first-out (FIFO)

approach to approximate the LRU behavior. FIFO replacement policy simply replaces

the oldest cache line in the set rather than the oldest used. The age of a cache line can

be approximated by incrementing a small (3-bit for example) counter at every memory

clock cycle. Replacement policies can have a significant effect on the cache behavior and

continue to be an active area of research.

One can also rely on a victim buffer [5, 147] to provide associativity for a cache dynami-

cally. A victim buffer is a small buffer of cache lines that were evicted most recently. When

a data request arrives, the victim buffer is checked concurrently with its corresponding

cache. The data found in the victim buffer is returned, replacing what is stored in the

cache. The victim buffer would then contain the recently evicted cache line. In the example

of the alternating data accesses, the victim buffer would provide the recently evicted data

at every cycle without incurring extra latency. The benefit of a small victim buffer is the

increase in effective cache hit rates without incurring latency, power and area costs as large

as what is required by associative caches.

Eventually, all cache line requests reach the main memory, which fundamentally be-

haves differently from the on-chip caches. Caches are built from static random access

memory (SRAM) which represents each bit using four to ten transistors. As a result,

SRAM provides fast access but is expensive in terms of run-time energy and on-chip area,

limiting the cache sizes to a few dozen megabytes at most. The main memory is made from

DRAM chips which define a single bit using a capacitor and a transistor, ignoring sense

amplifiers and other circuitry required to read or write stored data. Using capacitors for

storage requires more time and energy to read and write data, thus DRAM includes a small

SRAM cache. As a result, DRAM requires to be utilized differently to extract maximum
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performance.

2.2.3.2 DRAM Behavior

Although DRAM provides high capacity (tens of gigabytes) memory at affordable pri-

ces, it is notoriously complex in terms of access behavior and characteristics, and is rel-

atively slow in terms of access latency [9, 18, 23, 57, 76, 143]. The cost reductions per bit

forced DRAM chips to rely on capacitors for storage, which leak their charge over time.

As a result, DRAM storage must be periodically refreshed, reading and rewriting data in

DRAM storage. The refresh operation costs both latency and energy. From an external

point of view, DRAM chips support accessing data sized in cache line chunks. However,

unlike an on-chip cache, internally to DRAM, every access fetches an entire row of data (up

to 8KB) from one of the low-level memory circuit arrays into the row buffer.

The row buffer is implemented as fast static memory that provides cache-line-sized

access. In a sense, the row buffer acts like an additional hidden cache that is located across

DRAM chips. Fetching data into the row buffer from the internal DRAM storage is called

opening a row. Because reads are destructive, this requires writing the data already in the

row buffer back into DRAM storage, closing the row. The process of opening or closing

the row requires a significant amount of energy to either sense discharging capacitors or

charge them up with correct data. Accessing the data within the row, called an open row

access, is dramatically faster and more energy-efficient than if the access requires opening

a new row.

The memory controller is another critical piece of the DRAM memory system because

it interfaces between the memory requests from the processor and the complex DRAM

memory. Aside from managing DRAM storage to make sure the data does not degrade, the

memory controller also accumulates data requests and reorders them based on which rows

they map to. This improves the row buffer hit rates but introduces variability in access

latency. A ray tracer carefully restructured to improve memory access patterns during

traversal can help the memory controller increase the row buffer hit rate, thus reducing

both DRAM latency and energy [76]. Looking ahead, accessing a contiguous stream of

data comparable in size to a row buffer can represent a best-case use of DRAM in terms of

achievable latency and power consumption.
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2.2.4 Architecture Simulation

When designing application-specific accelerator architectures, cycle-accurate simula-

tors are indispensable tools for rapid exploration of the potential design space. They

provide the necessary details to capture the precise inner-workings of an entire system

during the entire execution of the target application to completion. This thesis relies

on the SimTRaX infrastructure [116, 117] to explore and tune architecture designs with

thousands of hardware threads and complex memory subsystems without introducing

high-level approximations. Other simulators are designed for different types of hardware

architectures, like gem5 [15], Simics [89], SimpleScalar [19], GPGPU-Sim [8], and others.

Please see the discussion in the original work [116, 117] on how the SimTRaX simulator

compares to these.

Cycle-accurate architecture simulators help iterate on designs optimizing a particular

application much faster than designing an ASIC. Simulators enable estimating perfor-

mance benefits of proposed custom hardware units dedicated to accelerating a particular

portion of an algorithm.

2.3 Discussion
This thesis combines ideas discussed so far to identify and to propose solutions to

inefficiencies in the traversal and intersection phase of the path tracing algorithm. With

the continued growth in the number of scene primitives, acceleration structures are es-

sential for ray tracing performance because they improve algorithmic complexity of the

search through all primitives per ray. Unfortunately, the reduction in computation and

the reduction in the amount of scene data transferred from main memory comes at the

cost of inefficient memory access patterns inherent in traversing acceleration structures.

The random memory accesses significantly degrade the memory system performance,

leading to high miss rates and miss penalties throughout the entire memory hierarchy.

Moreover, the DRAM row buffer hit rates are affected and require opening new rows,

costing additional latency and energy.

As the gap between available on-chip computational power and the available memory

bandwidth per core widens, the computation savings offered by acceleration structures

become less effective compared to the degrading performance of the memory system.
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As a result, this thesis reorganizes the BVH acceleration structure and how it is used to

make memory accesses resemble streaming rather than random access. In addition to

other improvements, this reorganization makes the ray traversal phase of ray tracing use

memory bandwidth more efficiently, improving the overall path tracing performance.



CHAPTER 3

PREVIOUS WORK

In this chapter, we provide a summary of the recent work on improving the ray tracing

performance through both algorithmic modifications and custom hardware architecture

designs.

3.1 Software Approaches
There is a large body of work evaluating and enhancing the performance of ray tracing

on commodity hardware that can not be modified. Software approaches modify the ray

tracing algorithm and its corresponding data structures to increase the efficiency of the

available hardware. Approaches tend to modify their treatment of either rays or scene

data in the process of ray tracing.

3.1.1 Focusing on Ray Data

The ray tracing algorithm described in the previous chapter considers processing in-

dividual rays one at a time. This description does not explicitly exploit ray coherence to

gain performance. Coherent rays tend to travel through the scene near each other, visiting

many of the same acceleration structure nodes and intersecting the same primitives. As a

result, one could reuse scene data between many rays, thus improving the efficiency of the

memory hierarchy and increasing the ray tracing performance. Methods focusing on ray

data tend to target finding and exploiting ray coherence.

Ray Packets One of the most popular techniques in achieving the real-time ray trac-

ing performance is tracing small collections of rays, ray packets, at once. The technique

was popularized by the increase in the adoption of the SIMD instructions in commodity

CPUs [13, 30, 34, 38, 111, 132, 135, 136]. Each ray packet typically contains a few dozen rays.

Ray packets benefit ray tracing performance in two ways.

The first benefit of ray packets is that they improve scene data reuse across many
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rays. As each ray traverses through the scene, it fetches scene data. Treating coherent

rays independently results in reloading the same data many times. Collecting coherent

rays into a packet to be traversed together lets the rays reuse the data across the entire

packet, amortizing the cost of cache misses and reducing the total amount of scene data

transferred from main memory. As a result, using ray packets enables to perform a lot

more computation per byte of data fetched, improving ray tracing efficiency [137].

The second benefit of ray packets is that they map nicely to SIMD vector instructions

within hardware architectures. One example of a vector instruction is component-wise

multiplication of two four-wide data vectors at once. Alternatively, this operation would

require four multiply instructions, one for each individual component. Data in ray packets

is arranged so that the traversal and intersection computations can use the full width of the

SIMD vector instructions across many rays in the packet. For example, one can intersect

four rays with a single bounding box at the same time. Other combinations of intersecting

many rays against many AABBs or triangles are possible [137].

The performance of ray packet approaches suffers when the number of active rays in a

packet drops, as rays finish traversal after finding their hits, or as rays diverge from each

other and traverse different portions of the scene. Primary rays can be quite coherent,

but coherency quickly breaks down for secondary rays which rarely follow similar paths

throughout the scene. Typically systems maintain a list of which rays are active in the

packet and continue processing ever smaller portions of the packet until no active rays

remain. As the ray coherence decreases, the benefits of ray packets decrease [3, 111, 135].

3.1.2 Focusing on Scene Data

Improving the acceleration structure design can lead to significant increases in the

ray tracing performance by reducing the amount of computation required to find the

closest object a ray hits. In that spirit, some recent research focuses on building BVHs

with tighter bounds and lower SAH values. Other recent work focuses on modifying the

acceleration structures to reduce how much data is fetched to generate an image frame

either through increasing scene data reuse, reducing the amount of memory bandwidth

used, or improving how the memory is accessed.
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Popular BVH Flavors Split BVH (SBVH) behaves similar to kd-trees and allows split-

ting triangles between child nodes, duplicating their references, when it significantly re-

duces the SAH cost of the tree [123]. SBVH benefits scenes with long triangles or triangles

rotated off axis because without splits their AABBs would contain a lot of empty space.

Linear BVH (LBVH) is designed to be built on massively parallel hardware architec-

tures by leveraging Morton codes [92] to order all input primitives [81]. At each level of

the tree b, the primitives are sorted using the radix sort according to the b most significant

bits in their Morton code. Work queues are used to test many potential splits using SAH

beyond certain LBVH depth.

Hierarchical LBVH (HLBVH) extends the LBVH approach and uses two phases to build

the tree by relying on compress-then-decompress strategy to exploit spatial and temporal

coherence in the mesh [100]. First phase uses the Morton codes to pre-sort all primitives

and build a tree using a number of most significant bits in the Morton code. Each leaf

node of this coarse tree can contain many primitives. In the second phase, each leaf is

subdivided into subtrees by considering the next few bits in the Morton code as possible

split positions. The authors handle dynamic scenes by rebuilding the BVH for every frame

instead of refitting the BVH from the previous frame. HLBVH can be built very quickly on

commodity GPU architectures, thus making it feasable to support dynamic scenes without

a loss in ray traversal performance. The quality in terms of the SAH value can be improved

through the use of tree rotations [67].

Scene Subdivision Scene data can be reordered in memory to improve the locality of

the memory access patterns during ray traversal. Rearranging data can help increase cache

hit rates because of spatial data locality and can help reduce the amount of memory traffic

needed to render the scene by processing more rays through each portion of the scene.

The scene acceleration structure is subdivided into subsections based on either spatial

extents like a grid [14, 97] or parts of subtrees called treelets [1]. The entire BVH tree

can be subdivided into a set of treelets, each of which is a collection of connected BVH

tree nodes that form a subtree. An example is illustrated in Figure 3.1. The methods

associate a queue of rays for each subsection and process each ray in a given queue only

through the associated scene subsection. As a result, the ray tracing algorithm can fetch a

scene subsection into the on-chip caches and traverse a large number of rays through the
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Figure 3.1: Illustration of a BVH tree subdivided into a collection of treelets. Each treelet
is shown with gray background. Recreation from [1].

subsection leading to high cache hit rates. Rays are enqueued into different queues as they

enter the next scene subsections. The size of each scene subsection can be chosen based

on the desired cache behavior, for example the size of an L1 data cache. Rays can traverse

different scene subsections either in front-to-back order, visiting each subsection once, or

like a tree, reentering scene subsections from their children subsections. Revisiting scene

subsections may require reloading the scene data, potentially wasting memory bandwidth.

One problem with such methods is the increased cost of maintaining ray queues: creat-

ing, grouping, sorting, and storing them. Rays must either be kept on chip where memory

size is small, limiting the total number of rays that can be processed at the once. Alterna-

tively, rays must be written into main memory, adding pressure on the memory subsystem

and using memory bandwidth that could be instead allocated for scene or shading data.

3.2 Ray Tracing Hardware
In addition to the pure software approaches, one can design hardware architectures to

accelerate parts of the ray tracing algorithm. Typically the hardware is taylored to a specific

ray tracing configuration, like a particular acceleration structure. This section introduces

the dedicated hardware architectures designed to accelerate ray tracing. Although not

covered in this section, there are hardware accelerators dedicated to constructing the ac-

celeration structure prior to rendering [127, 128].

Starting in the 1990s, several companies built commercially available dedicated hard-

ware to accelerate ray tracing algorithms for the film industry. Unfortunately, the details
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are scarce and only the AR350 architecture that drove the Advanced Rendering Technol-

ogy’s RenderDrive rendering appliance has been discussed recently [21, 39, 48]. Intro-

duced in 2014, RayChip from SiliconArts [101] is a dedicated ray tracing processor for

embedded and low power applications that was built from the T&I architecture which is

discussed below. Instead of an ASIC designed only for ray tracing, recent commercial GPU

architectures (Imagination PowerVR [129, 130] and NVIDIA Turing GPU [99]) include ded-

icated ray traversal logic accessible to shader programs. The architectural details are scarce

at the time of writing.

Hardware acceleration for ray tracing can be very broadly categorized into SIMD and

MIMD approaches [29]. SIMD accelerates applying a single computation to a lot of data,

like intersecting a collection of rays against a bounding box or a triangle. Typically larger

work sizes lead to better SIMD utilization defined by the proportion of the individual

elements that are used during the computation. SIMD approaches suffer when there is

data or control divergence which reduce the SIMD utilization: for example, some rays in

a collection completing traversal earlier than others. Although MIMD techniques accrue

costs from decoding the same instruction between many threads, they handle control di-

vergence more gracefully because MIMD cores execute its own instructions independently.

3.2.1 SIMD Approaches

The SaarCOR (Saarbrücken’s Coherence Optimized Ray Tracer) architecture [112, 113]

implements a fixed-function pipeline for all phases of the ray tracing algorithm. It traces

packets of 64 rays through a kd-tree, which is built on a CPU and is loaded into the

accelerator memory ahead of time. The global scheduler unit controls and assigns work

between the four ray tracing processors, each connected to DRAM through its own dedi-

cated memory interface. Each ray tracing processor contains two additional units: a unit

for ray generation and shading and a ray tracing core. The ray generation unit generates

rays and dispatches them to the compute resources in the ray tracing core. Only Phong-like

simple shading [106] is implemented, which can generate additional rays and feed them

back into the system for traversal. The ray tracing core contains a ray collection unit which

is simply an on-chip buffer of rays to be processed. Ray packets from the collection unit

are fed into the fixed-function pipelines to traverse the kd-tree and intersect triangles. The
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fixed-function units use the specialized memory controller to load tree node or triangle

data from the corresponding caches backed by the main memory.

The RPU (Ray-Processing Unit) architecture [140, 142] extends the SaarCOR machine

by making the pipelines for intersection and shading programmable, while keeping the

kd-tree traversal units fixed-function. RPU also supports dynamic scenes because it can

build the kd-tree on chip. The shading processor operates on four-wide vectors in a SIMD

fashion with several threads executing simultaneously as a chunk. Each ray is assigned

to its own thread and the shading processor can switch between processing multiple rays

in a SIMT fashion when memory requests stall. This exploits data parallelism and hides

memory access latency.

The MRTP (Mobile Ray-Tracing Processor) architecture [68–70] optimizes ray tracing

for mobile processors by focusing on single ray performance through the use of recon-

figurable stream multiprocessors. Rays are provided by the ray generation unit and pro-

cessed sequentially by three reconfigurable stream multiprocessors: one is configured for

traversal, another for intersection, and the third for shading operations. The main memory

stores the acceleration structure and ray tracing kernel instructions. Each reconfigurable

stream multiprocessor contains 12 scalar functional units, each of which implements sev-

eral types of floating point operations. These scalar units can be dynamically reconfigured

to operate in 12-wide or 3× four-wide SIMD fashion.

The StreamRay architecture [45, 110] combines rays into a stream of data that is passed

from one ray tracing hardware stage onto the next in a pipeline fashion. Each stage

can be executed in parallel. Each stream of rays is filtered to identify active rays to be

processed before each stage. Stages include traversal and intersection and process many

rays in parallel. The filtering operation helps maintain coherent traversal for rays and

reuse scene data. However, once rays become incoherent enough, the architecture suffers

from reduced SIMD efficiency.

Modern GPU architectures are much more general purpose than the fixed-pipeline

graphics architectures of the past. Current high-end GPUs support both arbitrary memory

accesses and branching in the instruction set, and can thus handle operations required

for acceleration structure traversal. However, an NVIDIA GPU for example assumes that

every set of 32 threads (a warp) essentially executes the same instruction, and that instruc-
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tions can thus be executed in a SIMD manner. Operations like branching, frequent in

ray traversal kernels, are realized by transparent thread masking, which could lead to

divergent threads, very low SIMD utilization, and poor performance. NVIDIA provides

a ray tracing application programming interface (API) called OptiX [102] that can realize

impressive ray tracing performance on existing GPUs, but the SIMD execution model can

still be a limiting factor. AMD has a similar API and products in their GPUs called Radeon

Rays [6]. Until recent architectural advances in GPUs, ray tracing implementations have

relied on software techniques discussed previously [3, 4]. Recent research also proposes

enabling ray traversal on existing GPU architectures by adding small dedicated units to

keep overhead minimal [66].

In 2018, NVIDIA released the Turing GPU architecture with dedicated ray tracing

hardware support [99]. Although offering staggering performance per GPU in terms of

rays cast per second, the hardware is intended for hybrid rendering techniques. Such

techniques generate primary visibility using rasterization [107] like all modern GPU ar-

chitectures but allow casting rays into the scene for high quality secondary effects like

reflections and shadows. The ray tracing cores in the Turing architecture accelerate both

triangle intersection and traversal through an unknown BVH type. Unfortunately, the

available architectural details do not describe the structure of the ray tracing cores or how

they connect and utilize the memory subsystem.

3.2.2 MIMD Approaches

MIMD approaches to accelerate ray tracing typically fall into the SPMD form rather

than true MIMD, where each core could be running a completely different program.

The Copernicus architecture [44] is based on an Intel Core2-series cores. The chips

consist of 16 tiles, each with a large L2 cache shared by eight out-of-order processing cores

each capable of supporting eight threads simultaneously. The architecture traces four-wide

ray packets of rays through a kd-tree to utilize the four-wide vector SIMD functional units

per core. The architecture is very flexible, relying on more general-purpose execution units,

although it provides support for a dedicated accelerator block that is left unexplored.

The T&I (Traversal and Intersection engine) architecture [96] relies on dedicated ray

traversal and intersection units to accelerate ray tracing, targeting single rays rather than
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packets. The ray scheduler assigns active rays to execution units through intermediate

buffers. The full execution pipeline consists of four stages: node traversal, triangle fetch,

and two stages for the triangle intersection. The number of individual units in each stage is

balanced based on optimal performance of the entire architecture. Stages are connected to-

gether by intermediate buffers. The first intersection stage performs ray-plane intersection,

while the second intersection stage performs the division necessary to find the distance to

the triangle from the ray origin. It is possible to avoid executing the second stage if the ray

misses the triangle.

The SGRT (Samsung reconfigurable GPU based on Ray Tracing) architecture [82, 84,

85, 115] modifies the T&I engine in several ways. First, it replaces a single deep BVH

traversal pipeline by three fixed-function pipelines that separate traversal into individual

components: one fetches a node and checks if it is a leaf, another intersects a ray with an

AABB, and the third performs traversal stack operations. The other change is the addition

of the Samsung reconfigurable processor which generates and shades rays. It contains

a coarse-grained reconfigurable array to help execute computationally expensive kernels

more efficiently. The array is a collection of floating point execution units connected by a

reconfigurable fabric made up of multiplexers.

One pitfal of the T&I and SGRT architectures is how they handle cache misses for the

necessary intersection and traversal data when processing a ray through the pipelines.

Because stalling the pipelines until data arrives is detrimental for performance, the au-

thors keep retrying to process the ray through the pipeline until the data arrives, which

results in unnecessary energy expendature. To save energy, one can add a small ray

reorder buffer [83], which tracks which rays within the ray buffer are waiting for data.

The ray reorder buffer helps prioritize scheduling rays that have all the data necessary for

processing before feeding them into the intersection pipelines.

The RayCore architecture [95] builds on the T&I engine by unifying the implementation

of each pipeline through common hardware that operates in different modes, by adding

hardware for kd-tree construction and by adding support for shading. The T&I unit has an

L1 cache, with four units connected to a unified L2 cache. When an L1 data access results

in a cache miss, the pipeline simply retries to execute for the same ray until the requested

data is returned from a higher level cache. The shading unit supports textures and simple
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Figure 3.2: Basic TRaX architecture. A thread multiprocessor, TM, is shown on the left.
Instruction caches, I Cache, are shared by thread processors within a TM. TMs can be
tiled to create a single chip, where they share the L2 data caches. DRAM and its memory
controller which service the data requests from L2 caches are not shown on the right.

Phong shading [106].

The HART (Hybrid Architecture for Ray Tracing) architecture [94] expands the T&I

engine to add support for dynamic scenes through dedicated hardware for BVH updates.

The BVH itself is infrequently rebuilt on the CPU. The architecture also enables programm-

able shaders similar to a commodity GPU. The HART system uses shallow BVH trees

where leaf nodes can store more than two triangles each. Each triangle is stored packed

with its own bounding box to reduce the average number of triangle intersection tests

per ray. Because this thesis does not consider dynamic scenes, the dedicated BVH update

hardware is not discussed.

3.2.2.1 TRaX: Threaded Ray Execution Architecture

The TRaX (Threaded Ray Execution) architecture [77, 120, 121] explores a parallel tiled

architecture with many small processing cores that share access to computation and cache

resources. The smallest building block is a thread processor (TP) which is a simple, in-

order, single-issue core with general purpose registers and a small local scratchpad mem-

ory managed by the programmer. TPs are combined to form a thread multiprocessor (TM),

sharing access to other hardware units within the TM. Such units contain a multi-banked

L1 data and instruction caches and execution units that are expensive in terms of area like

a floating point divide, Figure 3.2. Each TP has its own program counter and can execute

instructions that are different from other TPs on chip. Because each TP is a very simple
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core requiring small area on chip, parallelism is achieved by increasing the number of

TPs per chip rather than through architectural complexities like out-of-order execution or

branch prediction. TRaX architectures rely on a simple memory hierarchy for its memory

subsystem. The chip tiles several TMs which share access to L2 data caches, which in turn

are backed by DRAM, Figure 3.3a.

The TRaX architecture is designed for general purpose computation and does not con-

tain any hardware units specific to ray tracing like traversal or intersection pipelines. The

unpredictable and embarrassingly parallel nature of ray tracing lets each TP, processing

an individual ray, diverge in terms of the ray tracing program and use the shared on-chip

resources more efficiently than commodity SIMD-style GPU architectures. The lack of syn-

chrony between ray threads reduces resource sharing conflicts between TPs and reduces

the area and complexity of each core. Given the appropriate mix of shared resources and

low-latency L1 data cache accesses, TRaX can sustain a high instruction issue rate without

relying on latency hiding via thread context switching.

Although scene data is reused across many TPs in the architecture, TRaX does not

attempt to include any coalescing techniques for either ray or scene data. However, TRaX

achieves more favorable performance per Watt and performance per unit area when com-

pared to commodity GPUs of the time. The throughput of TRaX is primarily limited by

the power and bandwidth consumption rather than the lack of computational resources.

3.2.2.2 STRaTA: Streaming Treelet Ray Tracing Architecture

STRaTA (Streaming Treelet Ray Tracing Architecture) [75, 76] extends the TRaX archi-

tecture to address the incoherent DRAM access patterns. STRaTA reorganizes the scene

data using BVH treelets that enable the discovery of rays that all access the same cache-

sized portion of the scene. STRaTA stores rays in on-chip buffers, thus restricting the total

number of rays and limiting shared complexity. STRaTA is motivated by the observation

that the DRAM uses about 60% of all energy used to render a frame, and that the entire

memory subsystem can use up to 90% [76]. The primary opportunity lies in improving the

memory system utilization by restructuring data access patterns to increase cache hit rates

and reduce off-chip memory access energy. From an energy and delay perspective, this is

a compelling target because fetching an operand from main memory is both slower and
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Figure 3.3: Overview of the memory hierarchies for TRaX and STRaTA architectures.
Arrows show the data flow. Green indicates scene data, while orange indicates ray data.

three orders of magnitude more energy expensive than performing a sigle floating point

arithmetic operation [28].

Overall, the memory hierarchy for STRaTA is shown in Figure 3.3b. One difference

from the TRaX architecture is the use of a single small L2 data cache shared by all TMs.

Another difference is a large global ray queue unit to manage all ray requests from TMs,

which lets different TPs contribute to processing a single ray. In the TRaX architecture,

each TP stores its own ray until the ray processing is complete. Note that the on-chip ray

queue and a small L2 data cache in STRaTA replace the large L2 data cache used by the

TRaX architecture.

STRaTA relies on two mechanisms to reduce the total energy consumption per frame.

The first mechanism subdivides the scene acceleration structure by using treelets [1, 97],

which enable to access scene data by streaming it from DRAM. Rays are kept on chip and

are accessed through dedicated hardware. Each TM processes many rays through its own

treelet, sized to fit in an L1 data cache, increasing the L1 cache hit rates significantly.

The second mechanism uses special-purpose computation pipelines that can be recon-

figured dynamically. The pipelines significantly reduce the register and L1 instruction

cache accesses and the instruction decode overhead. The pipelines consist of execution

units and multiplexers which can reconfigure the data flow to compute a ray intersection

with either an AABB or a triangle. The pipelines replace a large number of conventional

instructions with a single large intersection instruction. STRaTA does not investigate using

reconfigurable pipelines for shading.

As a result, STRaTA significantly improves the power consumption for traversal and
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intersection when compared to the TRaX architecture. Most of the savings originate from

the improved DRAM access patterns, which have been designed to align with how the

DRAM row buffer operates. Another benefit of STRaTA is that it scales much better with

the number of TPs compared to the TRaX architecture. As the number of TPs per chip

grows, the memory bandwidth becomes a bottleneck. Because STRaTA reuses the scene

data more aggressively than the TRaX architecture, it becomes bandwidth limited with a

larger number of TPs.



CHAPTER 4

DUAL STREAMING ALGORITHM

This thesis introduces the dual streaming approach for ray traversal, which reorders

the traditional ray tracing algorithm to make it more suitable for hardware acceleration,

considering DRAM behavior [118]. Our dual streaming approach organizes the memory

access pattern of ray tracing into two predictable and prefetch-friendly data streams: one

for scene data and one for ray data. Therefore, we pose ray tracing in a fully streamed

formulation, reminiscent of rasterization [107]. The scene stream consists of the scene ge-

ometry data (including the acceleration structure) that is split into multiple scene segments.

The ray stream consists of all rays in flight collected as a queue per scene segment they

intersect. Our scheduler prefetches a scene segment and its corresponding ray queue from

the main memory into on-chip buffers before both data are needed for traversal (i.e.,

perfect prefetching). Hence, the compute units no longer access the main memory directly.

Rays at the same depth are traced together as a wavefront, so simulating each additional

light bounce requires an additional computational pass. A predictable scene traversal

order ensures that each scene segment is streamed at most once per ray wavefront. Thus,

we regularize the memory traffic for scene data and reduce it to its absolute minimum.

The dual streaming algorithm provides a new ray traversal order that resolves some of

the decades-old problems of high-performance ray tracing:

• Scene data traffic from main memory is minimized. Rays do not revisit scene segments

during traversal. Since each scene segment is streamed at most once per ray wave-

front, memory bandwidth is not wasted by fetching the same scene data several

times. This is particularly important for large scenes and incoherent rays (such as

secondary rays).

• Random access to main memory during traversal is avoided. All necessary scene and ray

data are streamed on chip before they are needed for computation.
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• Memory latency is hidden by perfect prefetching. A traditional solution hides memory

latency by adding more threads, which is effective only when the memory system

can process their requests fast enough. Instead, the dual streaming algorithm hides

latency by perfectly predicting the next workload, which is dictated by the order in

which scene segments are processed.

• The memory access pattern for each stream fits how DRAM operates. Both the ray and the

scene streams are stored in memory as a collection of contiguous blocks of data that

fit nicely to the preferred DRAM operation. When data is fetched, the entire block is

streamed at once across the memory bus. This results in extremely high row buffer

hit rates, minimizing DRAM operations needed to access the requested data. Thus,

DRAM chips process requests faster and at lower energy, further resulting in better

bandwidth utilization.

Notice that all of these improvements relate to the memory system, since traditional ray

tracing, especially for large scenes, can be bound by the memory accesses rather than

the amount of computation. Data movement is also the main culprit for energy use.

Therefore, all of these outcomes are critical to addressing the traditional problems with

high-performance ray tracing in terms of both rendering speed and energy use.

Overall the dual streaming algorithm implements path tracing as a sequence of pro-

cessing steps executed fully for every wavefront of rays. First, all rays in the wavefront are

generated, which includes either all primary rays created by the camera or all secondary

and shadow rays created by evaluating materials. Then, all rays in the wavefront are

traversed through the scene. The algorithm generates the next light bounce only once all

rays in the previous wavefront have been processed. This thesis focuses on accelerating

only the traversal and intersection phase of path trhacing, and thus does not consider the

shading phase that evaluates materials.

4.1 The Two Streams
The main goal of the dual streaming algorithm is to eliminate the irregular accesses to

the main memory and to minimize the scene data transfer by reformulating ray tracing as

processing of two separate data streams: a scene stream and a ray stream.
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Figure 4.1: In-memory layout for the scene stream that consists of BVH treelets.

The scene stream consists of multiple scene segments that collectively represent the entire

scene geometry data and that can be processed independently. The memory footprint of

each scene segment is sized as a multiple of the DRAM row buffer capacity to enable

efficient streaming. Although most acceleration structures could be used to generate scene

segments, our implementation splits a BVH into treelets [1], each containing both internal

and leaf nodes, as well as the scene geometry (e.g., triangles). Each scene segment is

organized in memory so that all of its nodes and geometry can be accessed sequentially to

improve the spatial locality of the data. Each scene segment stores all of its acceleration

structure nodes first followed by the primitive data, interleaving both data types in mem-

ory. Note that this memory layout is different from the traditional acceleration structure

implementations that separate the block of acceleration structure node data from the block

of geometry data, even if the primitives themselves are reordered.

Figure 4.1 shows the memory layout for the scene segments made up of BVH treelets.

The acceleration structure node format is described in Figure 4.1a. The interior nodes use

64 bytes, while the leaf nodes use 8 bytes. The interior nodes are larger because they use

48 bytes extra to store the AABBs for their children. Note that the first word in each node

representation uses the sign bit to distinguish between node types. Optionally for internal

nodes, the first word can also pack the two-bit representation (buts 30 and 31) of the axis

which was used to separate the children nodes. The leaf node uses the remainder of the

bits in the first word to specify the number of primitives it stores. Words that store near
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address locations point at either a child node (for interior nodes) or the first primitive (for

leaf nodes). In a subtree ids word, intior nodes store indexes of the treelets that the chidlren

nodes belong to, each represented as a 16-bit integer. As shown in Figure 4.1b, each treelet

is stored in its entirety in memory, including both the acceleration structure node data

and the triangle data. Node data is stored first, following a typical BVH approach where

sibling nodes are placed next to each other. Triangles are stored after, such that triangles

belonging to the same leaf node are stored together. Each triangle is stored simply as

9 words (36 bytes): a 3D position for each vertex. Other triangle attributes can be placed

immediately after. Note that storing a set of indexes into the vertex position array to define

triangles can potentially significantly reduce the overall scene storage. Treelets are stored

one after another in memory without any padding.

The ray stream is the collection of all rays that are in flight, split into multiple queues,

one per scene segment. The ray stream contains basic ray information: origin, direction,

and a ray index. The index specifies which image sample any given ray corresponds to.

Since the scene segments are traversed independently, there is no need to store a global

traversal stack for each ray, significantly reducing the storage overhead for the ray state.

Each ray queue is stored as a linked list of ray buckets, where each ray bucket contains a

number of rays. The ray bucket header stores the number of rays contained within and a

pointer (a memory address) to the next ray bucket in the list. Because each ray uses the

same number of words for storage, we can treat each ray bucket as an array rather than a

linked list, and thus storing the number of rays per ray bucket is sufficient. Although rays

within a single ray bucket are spatially coherent, different ray buckets within a single ray

queue are unlikely to be. Ray buckets located sequentially in main memory can belong to

different ray queues and can be filled out of order, leading to fragmentation.

Throughout traversal, rays are added to the ray queues of scene segments they need to

visit, and are removed from the ray queues as the associated scene segments are processed.

Because our scene segmentation is hierarchical, the ray queue for a given scene segment is

filled as the algorithm processes the rays through its parent scene segment. The ray queue

is drained only after the parent scene segment has been fully processed, since no more rays

can enter into the ray queue.
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Figure 4.2: Illustration of the scene segment traversal order for (a) a 2D grid and (b) BVH
treelets. Each number shows when a particular scene segment can be processed.

4.2 Predictive Traversal Order
The construction of scene segments dictates the fixed traversal order based on how

rays can flow from one segment into the next. Because the dual streaming algorithm aims

to minimize the amount of scene data transferred, the algorithm maximizes the reuse of

every scene segment by processing all of its rays to completion. As a result, the algorithm

aims to never reload scene segment data unnecessarily. Making sure each scene segment

is fetched only once forces a specific order in which scene segments are processed, the

segment traversal order. Tree-based segmentations (e.g., BVH treelets) impose a hierarchical

relationship between scene segments in which rays flow from a parent to its children,

but never from children back to their parent. This eliminates the need to reload scene

segments, since rays are not allowed to revisit them.

The order in which scene segments are loaded is determined by the scene segmentation

used. The segment traversal order may follow strict breadth- or depth-first ordering, or

may leverage run-time statistics, like the distribution of rays among scene segments. For

example, we can consider the traversal order in the case where scene segments are grid

cells, Figure 4.2a. Each cell would load one after another from one grid corner towards

the other. Our particular implementation which uses BVH treelets as scene segments

focuses on the depth-first traversal order, Figure 4.2b. Once all rays finish traversing

through a particular scene segment, its children become available to be processed. If a

scene segment’s ray queue is empty when it is time to be processed, the scene segment

(and all of its descendants) can be safely skipped, since no rays visit that part of the scene.

The dual streaming algorithm maintains a list of all scene segments that are currently
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being processed, which we refer to as the working set. All scene segments in the working

set have nonempty ray queues and are processed in parallel. The algorithm also maintains

a list of scene segments that can be scheduled into the working set for future processing.

As scene segments finish processing, their children are added into this list. The process of

moving a scene segment into the working set is called scheduling. Several approaches can

be used to schedule scene segments into the working set. Moreover, rays from the same

ray queue, which traverse the same scene segment, can be distributed between different

processing threads. Traversal of the current ray wavefront ends when the ray queues for all

scene segments have been emptied. Due to the predefined scene segment traversal order,

each scene segment is processed (and therefore loaded) at most once per ray wavefront

(i.e., once per ray bounce).

4.2.1 Scheduling Scene Segments

We consider four approaches to select which scene segment is added into the working

set. Each approach scans through the queue of scene segment indexes to be processed

and can use the number of enqueued rays to choose whether to schedule a specific scene

segment. Once a scene segment is inserted into the working set, its data is prefetched from

the main memory. As a result, each approach chooses if and when scene segments are

prefetched from memory, resulting in different memory traffic and access patterns.

The conservative scheduler guarantees to fetch only the scene segments necessary to

process the current ray wavefront. Scene segments are added into the working set in

the same order generated by the fixed scene segment traversal order. The conservative

scheduler considers only the very first scene segment in the segment queue and schedules

that scene segment only if it contains rays. If the scene segment has no rays and its parent

is evicted from the working set, then the very first scene segment is popped from the

segment queue without being inserted into the working set. This behavior ensures that

both the given scene segment and its children are skipped during processing without being

prefetched unnecessarily.

The aggressive scheduler aims to fill the working set with scene segments aggressively

by scheduling the first scene segment in the segment queue regardless of whether that

scene segment has any rays. Once the scheduler determines that no rays would visit a
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particular scene segment that is already in the working set, it is evicted, canceling any data

prefetch instructions yet to be issued.

The opportunistic scheduler balances the two previous extremes. It aims to prefetch

scene segments more aggressively than the conservative scheduler, but, unlike the aggres-

sive scheduler, still aims to fetch only the necessary scene data. We explore two flavors of

this scheduler. The opportunistic 1st scheduler scans through the segment queue from front

to back and selects the first scene segment that contains rays, potentially skipping some

scene segments in the queue. The opportunistic max scheduler selects the scene segment

with the most rays. A scene segment is removed from the segment queue without insertion

into the working set if the scene segment contains no rays and its parent scene segment

has been evicted from the working set. The opportunistic schedulers can load and process

scene segments in an order that is different from the fixed segment traversal order.

4.2.2 Ray Duplication

Within a scene segment, each ray follows a typical BVH traversal implementation using

a local stack for the nodes to visit. However, when a ray finds an exit point from the current

scene segment into one of its child scene segments, the ray does not immediately follow

the path. Instead, the ray is duplicated into the ray queue for the child scene segment

and continues traversal within the current scene segment until all exit points are found.

A ray can be copied into many child scene segments after it traverses through a given

scene segment. We apply early ray termination locally: if a ray hits a primitive within the

current scene segment, it avoids traversing any nodes and enqueuing into any child scene

segments farther than its hit point. Ray duplication avoids reloading scene segments per

ray wavefront, because rays do not revisit the parent scene segment to reach a sibling scene

segment.

We maintain a shared hit record for each set of duplicate rays, which must be updated

each time an intersection is found. Since the number of rays is very large, the hit records

are stored in main memory rather than sent along with each ray. Updating the shared

hit records – and ray duplication in general – presents special challenges. Several scene

segments that are in the working set can contain duplicates of a given ray. Because all

scene segments in the working set are processed in parallel, updating the shared hit record
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must be atomic.

4.2.3 Early Ray Termination

Because rays can be duplicated, implementing the early ray termination optimization

becomes nontrivial. When a ray-primitive intersection is found, there is no easy way to

check whether this distance is the global minimum, or if a duplicate ray being traced

simultaneously in another scene segment has found a closer hit.

Because the shared hit records are kept in main memory, early ray termination tests

must access the memory during traversal, potentially incoherently. Although these ac-

cesses should get coalesced by the memory controller, threads could stall waiting for the

current hit distance to return from the main memory. The performance impact of testing

the shared hit record atomically before every ray-node intersection during traversal may

be prohibitive. As such, we do not consider this approach for the early ray termination.

Instead, we consider two other mechanisms: pre-test and post-test.

The pre-test checks the ray hit record before traversing a ray through the current scene

segment immediately after fetching the ray from a ray queue. Although this approach

avoids unnecessary ray traversal through the current scene segment, the ray still needs to

be enqueued into this segment for processing.

The post-test checks the ray hit record after traversal through the current scene segment

and before enqueuing the ray into another scene segment. This approach does not save the

cost of traversal through the current scene segment but avoids enqueuing rays into child

scene segments unnecessarily.

4.3 Algorithm Pseudocode
This section describes the pseudocode for the dual streaming algorithm combining all

of the concepts presented so far. The algorithm assumes the acceleration structure is built

and all of the scene data is already stored in main memory. The algorithm that renders

the entire image is shown in Algorithm 4.1. After setting up several helpful color buffers

and hit records (lines 1-6), the algorithm iteratively processes all rays one wavefront at a

time until the maximum path length is reached (line 7). Each ray wavefront requires three

processing phases.
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// initialize buffers

1 parallel foreach pixel in image do
2 image.SetPixelColor (pixel, black);
3 thruput.SetPixelColor (pixel, white);
4 shadowColor.SetPixelColor (pixel, black);
5 DS::ResetHitRecord (pixel);
6 end

// iterate over ray wavefronts. Extra pass for shadow rays from last

bounce

7 foreach depth ≤ max depth do

// 1. generate rays from camera or from shading a hit. Save into

queue for root scene segment

8 parallel foreach pixel in image do
9 if depth == 0 then

10 rays = camera.GenRay (pixel);
11 else
12 rays = GenSecondaryRays (thruput, shadowColor, pixel, depth);
13 end
14 DS::SaveRay (rays, 0);
15 end
16 barrier;

// 2. trace rays: fetch a ray from stream, traverse through

corresponding scene segment, add into next scene segments

17 parallel while ray = DS::ReadRay () do
18 TraverseRay (ray);
19 end
20 barrier;

// 3. accumulate colors from shadow rays into image

21 parallel foreach pixel in image do
22 color = ColorFromHit (pixel, shadowColor);
23 image.Accumulate (pixel, color);
24 end
25 barrier;
26 end

Algorithm 4.1: Pseudocode for the dual streaming algorithm. Execution of each parallel
loop is distributed between a collection of threads based on thread index. The barriers
that synchronize threads in between wavefront processing phases ensure correctness.
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The first phase generates the rays at a given ray depth for the current ray wavefront

(lines 8-16). These rays can be either primary (line 10) or secondary (line 12) which include

shadow rays. The generation of the secondary rays also shades hit points by evaluating the

material properties of the intersected surfaces. Shading also modifies the path throughput

for the current image sample. Further details are discussed below.

The second phase traverses all of the rays in the current wavefront (lines 17-20). Note

that fetching a new ray to proces (line 17) maintains the scene segment currently being

processed. The abstraction of tracking which scene segment a thread is processing simpli-

fies the implementation. As a result, fetching a new ray can schedule a new scene segment

into the working set. Details are discussed further below.

The third phase of processing a ray wavefront simply accumulates sample colors into

the image (lines 21-25). The shadow rays are used to transmit how much illumination is

transferred from the light onto the image (line 22).

Each phase of the dual streaming algorithm is written assuming it is executed in par-

allel and is depicted using parallel loops. It is assumed that the work is distributed

between processing threads automatically, and the work for each thread is treated in a fully

sequential manner. For simplicity, all functions specific to the dual streaming algorithm are

labeled using the DS:: prefix. Other nontrivial functions are described in detail separately

below.

The function that generates the secondary rays, GenSecondaryRays(...), is shown in Al-

gorithm 4.2. Rays are generated only if the current ray hits an object, and thus a nonempty

hit record is available (lines 2-5). If the path has already terminated for this pixel, then

the pixel will store a miss in its hit record. First, the method generates a shadow ray by

sampling the lights in the scene to select one (line 7). Because shadow rays are used to

account for how much light is transmitted onto the image, the contribution of the chosen

light to the image is stored assuming the light is not occluded (line 10). If the maximum

path length has not yet been reached, light can bounce from the hit surface. In this case the

function also generates a secondary ray (lines 11-18). A new ray is generated by sampling

the material properties of the hit surface (line 12). The path throughput is modulated by

the material properties (line 14) and is recorded in the path throughput buffer, thruput (line

15). The method can return either no rays, a shadow ray, or a shadow and a secondary
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1 rays = function GenSecondaryRays(thruput, shadowColor, pixel, depth):

// get hit record for pixel’s ray. Misses and terminated paths are

identified the same - hit record stores a miss

2 hitInfo = DS::FetchHitRecord (pixel);
3 if not hitInfo.didHit then

// background color or environment map can be handled here

4 return null;
5 end

// generate shadow ray. Store contribution color assuming light not

occluded based on path throughput so far

6 pathThruput = thruput.GetPixelColor (pixel);
7 light = scene.SampleLight ();
8 shadowRay = light.GenShadowRay ();
9 shadowRay.depth = depth + 1;

10 shadowColor.SetPixelColor (pixel, pathThruput * light.color );

// generate secondary ray, modulating path throughput by material

properties

11 if depth < max depth then
12 { secRay, brdf } = hitInfo.brdf .Sample ();
13 secRay.depth = depth + 1;
14 pathThruput = pathThruput * brdf * cos ;
15 thruput.SetPixelColor (pixel, pathThruput);
16 else
17 secRay = null;
18 end

// return 1 or 2 generated rays

19 return { shadowRay, secRay };
20 end

Algorithm 4.2: Pseudocode for the dual streaming algorithm function that generates
secondary rays based on a given hit point. The function GenSecondaryRays is used on
line 12 of Algorithm 4.1.

rays. An extension to generate several shadow rays, which can sample multiple lights, or

several secondary rays is straight-forward and is omitted for brevity.

The function that fetches color contributions to the image from individual pixel sam-

ples, ColorFromHit(...), is shown in Algorithm 4.3. It simply checks whether a shadow

ray is occluded (line 4). If not, then the function returns the color stored in the shadow

transmission buffer (line 5). Otherwise, if the shadow ray is occluded, it hits an object and

thus the light is occluded. Therefore, since no illumination can reach the camera along this

light path, the function returns the black color (line 2). Prior to returning any color, the
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1 color = function ColorFromHit(pixel, shadowColor):

// black returned by default

2 color = black;

// if shadow ray misses, light is visible. Return its contribution

to pixel

3 shadowHitInfo = DS::FetchHitRecord (pixel);
4 if not shadowHitInfo.didHit then
5 color = shadowColor.GetPixelColor (pixel);
6 end

// reset hit records for secondary and shadow rays at given pixel

7 DS::ResetHitRecord (pixel);

8 return color;
9 end

Algorithm 4.3: Pseudocode for the dual streaming algorithm function that computes
the contribution to the pixel color from the current ray wavefront. The function Color-
FromHit is used on line 22 of Algorithm 4.1.

function resets the hit records for both the secondary and the shadow rays (line 7). The

output of this function is sent into the image color accumulation function which computes

the image color per pixel, (line 23) in Algorithm 4.1.

The function that fetches a ray to be processed by a single thread, DS::ReadRay(), is

shown in Algorithm 4.4. It tries to prioritize the ray queue for the scene segment that the

thread is currently processing. If the current scene segment has some rays assigned to

it, the function will return the next ray in the ray queue (lines 3-6). If there are no rays

left in the current scene segment, the function schedules the new scene segment into the

working set (line 7) and fetches a ray from the corresponding ray queue (line 10). If no ray

can be fetched, all rays in the wavefront have been processed. Then the function finally

returns null signifying the stopping condition for traversing rays in a given wavefront

(line 12). Although the given description treats each ray queue data structure as a queue,

the conversion to a more-realistic implementation using a linked list of blocks of rays is

straight-forward and is omitted for brevity.

Finally, the function that traverses a given ray through the scene segment and intersects

it with all appropriate primitives within, TraverseRay(...), is shown in Algorithm 4.5.

The pseudocode includes the details for both pre- and post-test early ray termination

approaches discussed in Section 4.2.3. The implementation follows the traditional BVH
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1 ray = function DS::ReadRay():

// get id of the current thread

2 threadId = GetThreadId ();

// if current scene segment has rays for processing, return next ray

3 curSegmentId = DS::GetCurrentSceneSegment (threadId);
4 if DS::GetNumRays (curSegmentId) > 0 then
5 return DS::GetRayFromQueue (curSegmentId);
6 end

// schedule new scene segment, return next ray for processing

7 nextSegmentId = DS::ScheduleSceneSegment (threadId, schedulerType);
8 if DS::GetNumRays (nextSegmentId) > 0 then
9 DS::SetCurrentSceneSegment (threadId, nextSegmentId);

10 return DS::GetRayFromQueue (nextSegmentId);
11 end

// all rays in wavefront processed. Return end condition

12 return null;
13 end

Algorithm 4.4: Pseudocode for the dual streaming algorithm function that fetches a
ray to be processed by the current thread. The function DS::ReadRay is used on line
17 in Algorithm 4.1. The pseudocode relies on several dual streaming algorithm helper
functions identified with DS:: prefix, whose functionality is described by their name.

traversal which relies on a traversal stack that stores which BVH node is to be traversed

next, although in our case we store the node memory address instead of its index (lines

11-13). The algorithm proceeds until the traversal stack is empty, which signifies that all

nodes in the scene segment that a ray can traverse through have been processed. After

loading a node on top of the stack from memory, the algorithm intersects its AABB with

the ray (lines 16-17). If the ray misses the AABB, and thus the node, the algorithm grabs

the next node address from the stack (lines 26-27). If the stack is empty, the ray updates its

hit record, recording a closer hit that may have been found in this scene segment, and the

traversal stops (lines 20-25). If the ray intersects the AABB, and thus the node, it continues

traversal (lines 18-19), which is described in Algorithm 4.6. If the node is a leaf, the ray

intersects with all referenced primitives (lines 2-16). If the node is interior, we must test

which scene segment it belongs to (line 18). If the node is part of the same scene segment

currently being traversed, the traversal algorithm pushes the address of the farther child

node onto the traversal stack (lines 19), and continues traversal through the child node

that is closer (lines 20). If the node belongs to a scene segment different than the current
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one, the ray is added into the corresponding ray queue (lines 29-32), before continuing

to traverse the current scene segment by getting the next node from the traversal stack

(lines 26-27 of Algorithm 4.6).

The pre-test for the early ray termination is shown on lines 2-10 in Algorithm 4.5. It

fetches the global hit depth for the given image sample (lines 3-4) and compares against

the current ray maximum depth, set when the ray was enqueued into this scene segment.

Traversal continues with the shorter of the two distances (line 14). Shadow rays skip

traversal if the global distance is closer than the ray distance because a hit was already

found elsewhere marking this shadow ray occluded (lines 5-7). The post-test, shown in

lines 23-28 of Algorithm 4.6, checks the global ray hit depth against the hit depth of the

currently hit node before enqueuing the ray into another scene segment. Note that for

simplicity, the pseudocode enqueues the ray immediately rather than aggregating all of

the scene segment indexes into an array. Such an approach reduces the number of accesses

to the global hit record but introduces complexity. An implementation that relies on such

a method must carefully consider the size of the array because any scene segment can

have an unbounded number of child scene segments. As a result, an implementation must

occasionally empty the array by enqueuing the ray into the appropriate scene segments.

4.4 Discussion
Although the dual streaming algorithm reformulates ray tracing to use the streaming

memory access pattern, it exposes new challenges and restrictions. First, to maximize

scene data reuse, all rays in flight are stored in and streamed from the main memory,

instead of just a small number of rays being stored (and processed) on chip. Although

streaming rays from DRAM is highly efficient, fetching rays introduces additional load

on main memory, which we found to be offset by the reduction in scene traffic for most

scenes. Secondly, our implementation of the predictable segment traversal order requires

some rays to be duplicated. Even though the duplication eliminates the need to store a

traversal stack per ray, it still puts extra pressure on the memory system, in terms of both

storage and bandwidth, and requires atomic hit record updates. Finally, unlike traditional

ray tracing, implementing efficient early ray termination and optimizing the ray traversal

order with the dual streaming algorithm is nontrivial and is left for future work.
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1 function TraverseRay(ray):

// perform pre-test early ray termination

2 if pre test then
3 globalHitInfo = DS::FetchHitRecord (ray.pixel);
4 globalHitT = globalHitInfo.rayDist;
5 if globalHitT ≤ ray.t and ray.isShadow then
6 return;
7 end
8 else
9 globalHitT = ∞;

10 end

// initialize traversal stack, etc.

11 stack [max stack size];
12 sp = 0;
13 nodeAddr = ray.nodeAddr ;
14 ray.t = min (ray.t, globalHitT);

// continue tracing until stack is empty

15 while true do

// load current node from memory, and intersect ray with its AABB

16 node = LoadNodeByAddr (nodeAddr);
17 nodeHitInfo = node.IntersectRay (ray);
18 if nodeHitInfo.didHit then

// ... process the node. See Algorithm 4.6 ...

19 end

// traversal stack is empty: scene segment processing finished.

Update ray hit record automically

20 if sp == 0 then
21 if not ray.isShadow then
22 DS::UpdateHitRecord (ray.pixel , ray.hitInfo);
23 end
24 return;
25 end

// get next node address, continue scene segment traversal

26 sp = sp - 1;
27 nodeAddr = stack [ sp ];
28 end
29 end

Algorithm 4.5: Pseudocode for the dual streaming algorithm function that traverses a
ray through its current scene segment. The function TraverseRay is used on line 18 in
Algorithm 4.1. Processing the BVH nodes (lines 18-19) is shown in Algorithm 4.6. The
pre-test early ray termination is shown on lines 2-10. The post-test early ray termination
is shown in Algorithm 4.6.
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// ... continues from line 18 in Algorithm 4.5

1 if node.isLeaf then

// leaf node: intersect against triangles within

2 for triId in node.triangles do
3 triangle = LoadTriangle (triId);
4 hitInfo = triangle.IntersectRay (ray);

5 if hitInfo.didHit then

6 if ray.isShadow then
// stop traversing shadow rays once hit is found

7 DS::UpdateHitRecord (ray.pixel , hitInfo);
8 return;
9 else

// non-shadow ray: save closest hit for current segment

10 if hitInfo.rayDist < ray.t then
11 ray.t = hitInfo.rayDist;
12 ray.hitInfo = hitInfo;
13 end
14 end
15 end
16 end
17 else

// interior node: continue traversal. May enqueue into new segment

18 if node.segmentId == ray.segmentId then
19 stack [sp ++] = node.FarChildAddr (ray);
20 nodeAddr = node.CloseChildAddr (ray);
21 continue;
22 else

// post-test eary ray termination updates ray hit distance

23 if post test then
24 globalHitInfo = DS::FetchHitRecord (ray.pixel);
25 globalHitT = globalHitInfo.rayDist;
26 else
27 globalHitT = ray.t;
28 end

// enqueue if node hit closer than current ray distance

29 if nodeHitInfo.rayDist < globalHitT then
30 DS::SaveRay (ray, node.segmentId);
31 return;
32 end
33 end
34 end

Algorithm 4.6: Pseudocode for the dual streaming algorithm traversal of a ray through
a BVH node, used on line 18 in Algorithm 4.5. The post-test early ray termination is
shown on lines 23-28.



CHAPTER 5

DEDICATED DUAL STREAMING HARDWARE

ARCHITECTURE

The dedicated hardware architecture designed to accelerate the dual streaming algo-

rithm follows closely the algorithm described in the previous chapter. The architecture

includes specialized hardware units to handle the ray and scene streams, which service

the functions identified with the DS:: prefix as listed in the algorithms in the previous

chapter.

Our hardware implementation of the dual streaming algorithm is shown in Figure 5.1.

The design follows the single program multiple data (SPMD) paradigm, with independent

control flow for each processing thread. The architecture partitions a large number of

thread processors (TPs) into a number of thread multiprocessors (TMs) to allow TPs to

share units that are expensive in terms of area, like fixed-function intersection units, ray

staging buffers, and L1 caches. Each TP is a simple in-order hardware processor with its

own program counter and a small local scratchpad memory.

The complete streaming processor is built from many TMs which share access to several

global units: the stream scheduler, the scene buffer, and the hit record updater. These units

connect to the memory controller, which interfaces with the off-chip DRAM. Figure 5.1

shows details for these global units and Table 5.1 describes their on-chip areas.

Unlike traditional CPU or GPU architectures, our dual streaming implementation fea-

tures no large L2 data caches. Instead, the chip area is used for dedicated scene and ray

buffers, which are essentially large static random access memory (SRAM) scratchpads.

Compared to typical caches of similar capacity, such scratchpads are simpler to implement,

faster to access, and consume less energy per access.
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Figure 5.1: Overview of our dual streaming hardware architecture. Lines connecting
hardware modules indicate the flow of data colored by its type: (red) ray data, (blue) scene
data, (black) hit records, and (green) other data. The streaming processor uses many
thread multiprocessors (TMs) for computation, which share chip-wide stream units. A
TM combines many lightweight hardware thread processors (TPs) that share instruction
cache and computation units.

Dual Streaming STRaTA
Common System Parameters
Technology Node 65nm CMOS
Clock Rate 1GHz
DRAM Memory 4GB GDDR5
Total Threads 2048
On-Chip Memory
L2 Cache 512KB, 32 banks
On-Chip Ray Queues N.A. 4MB
Scene Buffer 4MB N.A.
TM Configuration
TPs / TM 16 16
L1 Cache 16KB, 8 banks 32KB, 8 banks
Ray Staging Buffer 2×2KB N.A.
Area (mm2)
Memory Controller 13.1 13.1
Scheduler 0.53 negligible
Caches / Buffers 190.4 159.7
Compute 57.1 57.1
Total 261.1 229.9

Table 5.1: Hardware configurations used for architectural performance evaluation.
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5.1 Specialized Hardware Units
The dedicated hardware architecture implementing the dual streaming algorithm relies

on several special-purpose hardware units for acceleration. Most of the complexity is in

the memory system hierarchy. Each TP acts as a simple data processor with access to

dedicated ray intersection pipelines. All of the complex control logic is located within the

stream scheduler.

5.1.1 Stream Scheduler

One of the key units in our implementation is the stream scheduler, shown in Figure 5.1.

The stream scheduler marshals the data required for ray traversal to prevent TPs from

accessing main memory directly and randomly for both scene and ray stream data. The

stream scheduler also tracks the current state of traversal, including the working set of

active scene segments, the mapping of TMs to scene segments, and the status of the scene

and ray streams.

As discussed in the previous chapter, the scene is partitioned into a number of scene

segments each of which can be traversed independently. With the exception of the first

scene segment (e.g., the root treelet, when using BVH treelets as scene segments), scene

segments become eligible for traversal only after their parent has been traversed. When

the traversal of a scene segment is completed (i.e., its ray queue is depleted), the stream

scheduler replaces the scene segment with another. After adding a scene segment to the

working set, the stream scheduler transfers the corresponding data from DRAM to the

scene buffer.

Tracking the scene segment stream incurs little overhead per segment: starting memory

address and the number of cache lines transferred so far. We have found that streaming

eight scene segments simultaneously performs well, and requires modest area within the

stream scheduler: 40 bytes of storage and some counters.

Rays are partitioned into a number of queues, with one queue per scene segment.

While only a small subset of all active rays can fit on chip, the rest are stored in DRAM

until they can be processed. Each ray queue is stored as a linked list of ray buckets. Within

its header, each ray bucket stores the next bucket’s memory address and a ray counter.

Although some ray buckets may be filled only partially, buckets maintain constant size and
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Channel 0 Channel 1 Channel 2 Channel 3
DRAM

8 KB rows 64 KB treelets 2 KB ray buckets

Scene Segments Ray Bucket List per Segment

Figure 5.2: Layout of both ray and scene streams in DRAM. Each scene segment (left)
is placed contiguously in DRAM, including triangles. Ray stream (right) consists of a
linked list of buckets, which may be stored in a fragmented fashion. Note that the stream
scheduler stores pointers to scene segments and the first (head) ray bucket, depicted by
dashed arrows.

row buffer alignment in DRAM. In our implementation, four 2KB ray buckets perfectly fit

within an 8KB DRAM row buffer to leverage the streaming behavior of DRAM.

Both scene segments and ray buckets are sized cognizant of the DRAM row buffer, to

make sure each data stream is stored in main memory as a continuous block, as shown in

Figure 5.2.

TPs do not read rays directly from the ray queues. Instead, the stream scheduler fetches

entire ray buckets from DRAM and forwards them to the appropriate TM’s ray staging

buffer. Similarly, TPs write rays into ray queues via the stream scheduler, which maintains

a small queue of such requests. The stream scheduler drains the queue by writing each ray

into the appropriate ray buckets stored in DRAM.

Since rays are written into the ray queues of child scene segments as they exit their

parent, the total number of potential write destinations equals the total number of children

of all scene segments currently in the working set. Since scene segments can have many

children, the number of destinations can be large, and for some of our test scenes it reached

about a thousand. Maintaining pointers to the ray queues for such a large number of scene

segments – along with the metadata capturing the parent-child and sibling relationships

required for queue processing and scheduling – requires approximately 16KB of SRAM.

Each TP fetches individual rays to be processed from one of the ray staging buffers

within its TM. There is no deterministic mapping between TPs in a TM and rays within

the staging buffer. The staging buffer is sized to store exactly two ray buckets and is split

into two halves: while one is being drained by TPs, the stream scheduler fills the other with

another ray bucket from DRAM. Each ray stores the address of the node it is traversing.
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The TPs use this address to load scene data from the shared L1 cache, which accesses the

scene buffer on cache misses. The scene data is fed into TM-wide intersection pipelines for

traversal.

After one half of a ray staging buffer runs out of rays, it is swapped for the other

half. The stream scheduler polls which ray staging buffers are empty, and attempts to

find another ray bucket from the same scene segment to improve the reuse of the L1 data

cache which stores the scene data. If there are no more ray buckets for the scene segment

being processed currently, the scheduler attempts to find a ray bucket for another scene

segment already in the working set. If there are no more ray buckets left for any of the

scene segments in the working set, the scheduler must wait for the traversal of a scene

segment to complete, before evicting it from the working set and replacing it with another

scene segment. To select the next scene segment for inclusion in the working set, the stream

scheduler maintains a queue of scene segment indexes to be processed, ordered by the

depth-first scene segment traversal.

5.1.2 Scene Buffer

The scene buffer is a global, on-chip memory that holds the scene data for all scene

segments currently in the working set. Each scene segment is located contiguously in

the buffer’s internal storage. The scene buffer hides memory access latency much like

the last-level caches in more traditional architectures, but operates in a simpler manner.

Unlike a traditional cache, the scene buffer is read-only and is managed entirely by the

stream scheduler, rather than responding to individual memory access requests. When a

new scene segment is added into the working set, the scene scheduler replaces the data for

the evicted scene segment by the new data in the scene buffer. TPs access scene segments

only through the L1 data cache backed by the scene buffer, which eliminates random access

to DRAM for scene data. The L1 data requests can stall if the requested cache line is yet to

arrive into the scene buffer. Recently accessed scene data is retained in the L1 data cache

of each TM, which reduces the contention for the global scene buffer.

5.1.3 Hit Record Updater

The hit record updater is a unit that atomically updates the ray hit records stored in

DRAM. Duplicated rays share a common hit record, requiring atomic updates whenever
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an intersection is found. When a TP finds a primitive hit, it sends an update request to the

hit record updater, which maintains a small on-chip queue of requests. If there is an update

pending for the given ray index (i.e., a duplicate ray found another hit), the closer of the

two hits replaces the update; otherwise, the request is added into the queue. The hit record

updater compares the hit distances to the values recorded in the DRAM and updates hit

information in DRAM only if the pending hit is closer. This requires a read-modify-write

operation, which must wait for the hit record read requests to return from DRAM. As long

as the hit record updater queue is not full, TP execution is not blocked. Despite our initial

apprehension, we have not found access to the hit record updater to be a bottleneck.

5.2 Performance Evaluation
We use a cycle-accurate simulator SimTRaX [116, 117] to evaluate our dual stream-

ing architecture and we compare our results to STRaTA [75, 76], a state-of-the-art ray

tracing specific architecture. The choice of STRaTA for direct comparison is motivated

by the fact that it also aims to optimize DRAM accesses (although using a traditional

ray tracing paradigm) and thus we can design fair comparisons by simulating similar

hardware parameters. We also provide limited comparisons against NVIDIA’s OptiX GPU

ray tracer [102], Microsoft’s DXR ray tracer [144], and Intel’s Embree CPU ray tracer [137],

running on actual hardware.

In our comparisons, we use no early ray termination for our dual streaming hardware,

but we do use early ray termination for STRaTA, OptiX, DXR, and Embree. Therefore, our

dual streaming hardware performs substantially more work without the benefits of early

ray termination. For an additional comparison, we provide results with STRaTA without

early ray termination. We present our test results with the two early ray termination

approaches using the dual streaming hardware separately.

5.2.1 Cycle-Accurate Simulation

The SimTRaX simulation infrastructure [116, 117] provides several components that

are important for quick exploration of possible architecture designs concurrently with tar-

geted software modifications: combined cycle-accurate and functional simulation capabil-

ity, flexibility in how functional units are connected, a highly accurate DRAM model, and
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integration of the LLVM toolchain [80] for easy ISA extensions and compiling applications

written in a high-level language like C++.

The simulation loop iteratively generates clock rise and fall signals across all functional

units in the hardware architecture. For every clock cycle, SimTRaX first simulates the

computation units, then the units in the memory hierarchy, and finally the main memory.

The simulator runs until all hardware threads finish execution, then reports execution

statistics and lets the application post-process memory to generate its output which can

be used to write an output image. SimTRaX can use source-level debugging symbols

provided by LLVM to debug and profile simulated architectures and applications using

a wide variety of metrics (e.g., time spent per program source code line, or energy per

function call). When simulating memory-bound applications like ray tracing, particularly

with thousands of threads, an accurate memory model is of key importance and can have a

drastic impact on the results. Furthermore, the energy used to render each frame using the

ray tracing depends significantly on how the algorithm uses the memory system, requiring

accurate simulation and profiling of the memory system behavior, including DRAM [126].

5.2.2 Hardware Specification

Table 5.1 lists the hardware configurations for both the dual streaming and STRaTA

architectures. On-chip cache and SRAM buffer areas are estimated using Cacti 6.5 [93].

Compute resource areas are estimated with synthesized versions of the circuits using Syn-

opsys DesignWare / Design Compiler. We did not fully synthesize the logic circuitry for

the memory controllers or the dual streaming scheduler. Instead, the area consumed by

the memory controllers is mostly dominated by their buffers and other SRAM compo-

nents [16]. The dual streaming scheduler is similar to a memory controller in terms of

logic circuitry. Therefore, to make conservative area estimates for the memory controller

and the stream scheduler, we assume the area of these units is 2× the size of the SRAM

components, which we model with Cacti. STRaTA’s scheduler is reported as roughly zero

area because its scheduling metadata is contained entirely within the ray queue, which is

already accounted for. Since STRaTA has a much simpler scheduler, the additional logic

circuitry would be negligible in area. We do not include area comparisons for Embree, Op-

tiX or DXR, since STRaTA and the dual streaming hardware are imagined as accelerators,
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not a full-system CPU/GPU, and because the 65nm process technology we can simulate is

much larger than the current commercial technologies.

In all simulated test results we present, the processor runs at 1GHz and has 4MB of on-

chip memory (used differently by STRaTA and dual streaming architectures), 128 thread

multiprocessors each with 16 hardware threads (2048 threads total), each with 32 registers

and 512B of local scratchpad memory. Note that this is a relatively moderate configuration

compared to currently available discrete GPU hardware. Beyond the common parameters,

hardware-specific parameters are specified as a result of numerous tests to find an optimal

setup for each hardware architecture.

The global scene buffer for the dual streaming architecture is 4MB in size and can store

at most 64 BVH treelets, each 64KB in size. Ray buckets are 2KB in size and store up to 63

rays.1 The sizes of these components are chosen based on our experiments with different

configurations. Our earlier tests revealed that we can achieve slightly higher performance

for almost all scenes when the scene buffer size is 4MB, as compared to 2MB. However,

the optimal scene buffer size depends on the number of TMs. Our tests with different

ray buffer sizes provided only slightly elevated performance for most scenes with 2KB, as

compared to 1KB.

For the STRaTA results we use BVH treelets of size 32KB, which produced the best

performance in our tests. The on-chip memory for STRaTA is split into a 512KB L2 cache

and a 4MB ray buffer. The execution units of the original STRaTA multiprocessors dynam-

ically reconfigure into either a ray-box or two ray-triangle intersection pipelines. For a fair

comparison to the dual streaming architecture, we generated the STRaTA results using

fixed-function pipelines, which have slightly elevated performance.

The pipeline intersecting rays against boxes relies on inverted ray directions [139]. Each

TP uses the TM-wide shared division unit to compute this inverse immediately after fetch-

ing a ray from the ray staging buffer. The inverse is reused when traversing an individual

scene segment. The ray-triangle intersection pipeline relies on Plücker coordinates [114]

to delay the division until the ray-triangle intersection is confirmed. Both architectures

include a single ray-box (1 cycle initiation interval, 8 cycle latency) and two ray-triangle

1Each ray bucket stores a small header, which reduces the total number of rays in a bucket by one - from
64 to 63 rays for a 2KB ray bucket.
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(18 cycle initiation interval, 31 cycle latency) pipelines shared by all TPs in each TM.

Our evaluation setup includes a GDDR5 DRAM subsystem with 16 32-bit channels,

running at an effective clock rate of 8GHz for a total of 512 GB/s maximum bandwidth.

The DRAM row buffer is 8KB wide. We rely on a sophisticated memory system simulator,

USIMM [23], to accurately model DRAM accesses. Note that using a full memory system

simulator is essential for producing reliable results, since the ray tracing performance is

tightly coupled with the highly complex behavior of DRAM.

The OptiX (v3.9) results are obtained on an NVIDIA GTX TITAN GPU with 2688 cores

running at 876 MHz and 6144 MB GDDR5 memory with 288.4 GB/s peak bandwidth. The

Microsoft DXR results are obtained using the NVIDIA path tracing sample [144] running

on NVIDIA RTX 2080 GPU with 2688 cores running at 1.8 GHz and 8192 MB GDDR6

memory with 448 GB/s peak bandwidth. The Embree (v2.10) results are obtained with its

example path tracer (v2.3.2) running on an Intel Core i7-5960X processor with 20 MB L3

cache and 8 cores (16 threads) over-clocked to 4.6GHz.

5.2.3 Test Scenes

We use eight test scenes, shown in Figure 5.3, to represent a range of complexities

and scene sizes. They are rendered using path tracing [64] with five bounces, produc-

ing a highly incoherent collection of secondary rays, which is both challenging for high-

performance ray tracing and typical for realistic rendering. Each image is rendered at the

resolution of 1024 × 1024 pixels, resulting in at most 10.5 million total rays, including

both primary and secondary. Dual streaming architecture traces at most two million rays

(and their duplicates) per wavefront, while STRaTA traces 80,000 rays, many potentially

at different depths. We use a simple Lambertian diffuse material on all scenes, so that the

results are not skewed by expensive shading operations.

Some scenes are chosen to present the performance of our dual streaming hardware

in atypical cases that it is not designed to optimize. The first two, Fairy Forest and Cry-

tek Sponza, are small scenes that can mostly fit in the on-chip memory. Therefore, the

improvements that the dual streaming architecture introduces for better DRAM accesses

provide no benefits. The other two scenes, Vegetation and Hairball, are not as small, but

have extreme depth complexity, where early ray termination, which is disabled for the



74

Dragon
870K triangles

Dragon Box
870K triangles

Dragon Sponza
6.6M triangles

San Miguel
10.5M triangles

(a) Benchmark scenes

Fairy Forest
174K triangles

Crytek Sponza
262K triangles

(b) Small scenes

Vegetation
1.1M triangles

Hairball
2.9M triangles

(c) Scenes with high depth complexity

Figure 5.3: Scenes used for all performance tests and comparisons.

dual streaming architecture, can provide tremendous savings in terms of ray duplication

and traversal.

STRaTA is an architecture that assumes a slightly enhanced physical memory archi-

tecture by adding on-chip ray queues to the memory hierarchy. Because STRaTA stores

rays just in on-chip buffers, it can process only a limited number of rays simultaneously,

restricting shader complexity and treelet effectiveness. Nonetheless, because of its focus

on optimizing the DRAM accesses for at least the scene data, we choose STRaTA as our

primary comparison.

5.2.4 Overall Performance

Table 5.2 provides detailed test results. The results for our dual streaming hardware

and STRaTA are obtained from hardware simulations, so they include detailed informa-

tion. For the dual streaming architecture, we also report a breakdown of the memory

traffic and average ray duplication rates, which measure the ratio of the total number of

rays enqueued into any scene segment to the number of unique rays generated. The OptiX,
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Benchmark Small High Depth

Dragon Dragon Dragon San Fairy Crytek Vegeta- Hairball
Box Sponza Miguel Forest Sponza tion

OptiX
Render Time (ms/frame) 24.50 92.97 151.83 397.47 84.05 140.11 266.92 229.79
Rays Traced per sec (M) 135.0 112.6 66.0 24.4 78.9 72.0 26.1 27.5

DXR
Render Time (ms/frame) 3.57 16.89 24.90 37.98 11.13 16.92 22.51 11.21
Rays Traced per sec (M) 584.1 744.6 477.6 288.2 545.8 698.5 289.0 274.2

Embree
Render Time (ms/frame) 38.13 103.81 118.05 143.64 83.6 150.63 178.99 113.32
Rays Traced per sec (M) 99.5 89.1 70.6 50.5 96.1 62.0 41.7 45.3

Render Time (ms/frame) 23.12 91.27 70.98 125.51 16.1 39.0 48.23 36.2
Rays Traced per sec (M) 89.7 128.9 135.4 72.6 365.6 233.3 121.4 111.2
DRAM Energy (J) 2.34 (55%) 10.17 (56%) 5.32 (46%) 15.08 (60%) 0.87 (32%) 2.26 (32%) 5.38 (52%) 4.61 (59%)

On-Chip Memory Energy (J) 1.84 (43%) 7.67 (42%) 6.03 (52%) 9.76 (39%) 1.76 (65%) 4.55 (65%) 4.70 (46%) 3.02 (39%)

Compute Energy (J) 0.08 (2%) 0.29 (2%) 0.21 (2%) 0.33 (1%) 0.09 (3%) 0.24 (3%) 0.23 (2%) 0.14 (2%)

Avg. Bandwidth (GB/s) 219.33 266.65 137.48 219.34 99.01 101.95 229.59 254.53

ST
R

aT
A

$ Lines Transferred (M) 79.2 380.1 152.5 430.1 24.91 62.14 173 144

Render Time (ms/frame) 47.12 154.08 117.97 363.16 21.64 63.56 115.30 247.75
Rays Traced per sec (M) 44.0 76.3 81.5 25.1 272.2 143.3 50.8 16.2
DRAM Energy (J) 5.63 (66%) 21.61 (67%) 11.49 (60%) 48.50 (75%) 1.36 (40%) 4.46 (41%) 14.48 (61%) 35.47 (78%)

On-Chip Memory Energy (J) 2.72 (32%) 9.89 (31%) 7.31 (38%) 15.3 (24%) 1.97 (57%) 6.07 (56%) 8.78 (37%) 9.82 (21%)

Compute Energy (J) 0.15 (2%) 0.53 (2%) 0.38 (2%) 0.76 (1%) 0.12 (3%) 0.35 (3%) 0.46 (2%) 0.49 (1%)

Avg. Bandwidth (GB/s) 251.00 327.41 185.16 221.77 125.52 137.07 280.86 245.41

ST
R

aT
A

no
ea

rl
y

te
rm

in
at

io
n

$ Lines Transferred (M) 184.8 788.2 341.3 1258 42.4 136.1 506.0 950.0

Render Time (ms/frame) 18.08 66.3 40.93 79.61 17.05 44.6 68.56 63.27
Rays Traced per sec (M) 114.8 177.4 234.8 114.6 345.6 204.1 85.4 63.5
DRAM Energy (J) 1.15 (42%) 4.66 (40%) 4.47 (57%) 8.12 (50%) 1.61 (53%) 4.51 (50%) 4.41 (41%) 4.56 (43%)

On-Chip Memory Energy (J) 1.52 (55%) 6.54 (57%) 3.10 (40%) 7.63 (47%) 1.30 (43%) 4.14 (46%) 5.96 (56%) 5.75 (54%)

Compute Energy (J) 0.09 (3%) 0.36 (3%) 0.23 (3%) 0.53 (3%) 0.10 (3%) 0.32 (4%) 0.37 (3%) 0.33 (3%)

Avg. Bandwidth (GB/s) 140.21 114.98 271.30 255.61 230.35 237.40 142.75 142.88
$ Lines Transferred (M) 39.6 119.2 173.5 317.9 58.7 165.4 152.9 141.3

Ray Stream $ Lines (M) 11.92 (30%) 45.81 (38%) 43.94 (25%) 146.34 (46%) 18.4 (31%) 80.56 (49%) 94.03 (61%) 76.22 (54%)

Scene Stream $ Lines (M) 7.54 (19%) 8.0 (7%) 54.31 (31%) 72.27 (23%) 1.50 (3%) 2.26 (1%) 8.20 (5%) 19.18 (14%)

Shading $ Lines (M) 17.43 (44%) 42.38 (36%) 45.00 (26%) 46.22 (15%) 30.53 (52%) 45.42 (27%) 32.46 (21%) 26.99 (19%)

Hit Record $ Lines (M) 2.74 (7%) 22.97 (19%) 31.04 (18%) 53.93 (17%) 8.33 (14%) 37.21 (22%) 18.28 (12%) 18.89 (13%)

D
ua

lS
tr

ea
m

in
g

Ray Duplication 4.55 3.14 4.18 15.19 3.00 8.55 15.15 16.02

Table 5.2: The performance results comparing OptiX, DXR, Embree, STRaTA and our dual
streaming architecture. Note $ means cache, M means millions. Values highlighted in red
indicate the best performance for that metric, excluding DXR results which are provided
as a point of reference.

DXR and Embree results only include render time and rays traced per second, measured

on actual hardware.

Figure 5.4 compares the render times per frame between the dual streaming hardware,

STRaTA, OptiX, DXR and Embree. Figure 5.5 compares DRAM energy per frame between

the dual streaming architecture and STRaTA. Notice that for all benchmark scenes our dual

streaming hardware provides substantially superior performance as compared to STRaTA,

and the difference is more substantial in larger scenes. It achieves lower render times (up

to almost twice as fast in large scenes) and consumes less DRAM energy (about half of

STRaTA in some scenes).

For the small scenes, Fairy Forest and Crytek Sponza, which STRaTA can mostly fit
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Figure 5.4: Render time per frame. ET means early ray termination. Lower is better.
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Figure 5.5: DRAM energy per frame. ET means early ray termination. Lower is better.

in the on-chip memory, our dual streaming hardware implementation can still achieve a

similar render time, but the additional burden of streaming rays costs extra DRAM energy.

On the other hand, the lack of early ray termination in our implementation of the dual

streaming architecture hurts the render time in scenes with high depth complexity, Hair-

ball and Vegetation. This is due to the extra work that our dual streaming implementation

endures (to find potentially all hits) and STRaTA can avoid via early ray termination (to

find the first hit). This extra work can be clearly seen in the elevated ray-triangle inter-

section counts, shown in Figure 5.6, and the rates of ray duplication, shown in Figure 5.7.

However, in the San Miguel scene, even though it also has substantial depth complexity

causing several times more ray-triangle intersections, the savings of the dual streaming

architecture more than make up for the extra computation. This result confirms that the

dual streaming architecture has the potential to provide more savings for larger scenes.
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Figure 5.7: Dual streaming architecture ray duplication. Lower is better.

Even though the dual streaming architecture requires more intersection tests than STRaTA,

all compute makes up around 3− 5% of the total energy spent per frame, as can be seen

in Table 5.2. Thus, a five-fold increase in the number of intersection tests generates a tiny

increase in compute energy. The remaining 95− 97% of the frame energy is spent by the

on-chip memories and DRAM, which is by far the single largest consumer.

The breakdown of the memory traffic for the dual streaming architecture and STRaTA

are shown in Figure 5.8. Notice that the scene stream only takes up a relatively small

portion, even in large scenes. Although the total traffic generated by the dual streaming

architecture is smaller than that of STRaTA for all but Dragon Sponza and small scenes,

the dual streaming architecture substantially reduces scene the traffic for all scenes. Com-

paring Dragon Sponza to San Miguel, which is almost twice the size, we can see that both

scenes have similar scene stream costs (Figure 5.8). However, the ray stream can contribute
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Figure 5.8: Memory traffic generated by the dual streaming architecture and STRaTA (with
and without early ray termination, ET), in millions of cache lines (64B ea). Lower is better.

a substantial portion of the memory traffic in all scenes. In the case of San Miguel, ray

duplications not only cause extra computation but also a substantial amount of ray stream

traffic and extra hit record updates, although it still renders almost twice as fast with the

dual streaming architecture and consumes almost half the DRAM energy, as compared to

STRaTA. Note that the magnitude of the memory traffic is related to, but does not directly

correlate with, the DRAM energy or performance which are also influenced by the order

in which the memory requests are generated.

5.2.5 Early Ray Termination

In this section, we provide our test results that evaluate the two early ray termination

approaches for the dual streaming architecture discussed in Section 4.2.3. Figure 5.9 com-

pares the render times achieved by the pre-test and the post-test early ray termination

approaches to the render time with no early ray termination. Notice that the pre-test

can provide some improvement, especially for scenes with high depth complexity. The

post-test, however, is less effective in our test scenes. Our experiments also revealed

that combining both tests does not improve on using the pre-test alone, and thus the

combination is not shown. We attribute the slightly better performance achieved using

the pre-test (as compared to the post-test) to its ability to skip ray traversal through the

current scene segment, while the post-test is only helpful in preventing unnecessary ray

duplication when a closer hit has already been found.
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Figure 5.9: Effect of early ray termination on frame render times (ms/frame) of the dual
streaming architecture shown as a ratio to the render time using no early ray termination.
Lower is better.

It is also important to note that in some scenes our early ray termination strategies can

even impact the overall render time and DRAM energy negatively. This is not surprising,

since early ray termination requires random memory accesses that can cause TPs to stall.

As such, optimizing early ray termination in the dual streaming architecture is left for

future work.

We also compare the effect of early ray termination on STRaTA, shown in Table 5.2.

Disabling it can incur a significant increase in frame times of up to 3× for San Miguel

and almost 7× for Hairball. The total number of cache line transfers from DRAM at least

doubles. These increases are expected because STRaTA reloads scene data as rays traverse

back to parent treelets. Note that compared to STRaTA without early ray termination,

the dual streaming architecture has lower frame render times for all scenes. For all but

the small scenes, the dual streaming architecture uses less DRAM energy and the number

of cache lines transferred is also significantly smaller. Detailed exploration of early ray

termination within the dual streaming architecture is left for future work.

5.2.6 Scene Segment Schedulers

In this section, we provide our test results evaluating the four approaches to schedule

scene segments into the working set, described in Section 4.2.1. We use the default config-

uration of the dual streaming architecture described in Section 5.2.2. Figure 5.10 compares

the performance of scene segment schedulers from the perspective of the time to render

a single image frame. The data is normalized to the performance of the opportunistic 1st
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Figure 5.10: Frame render times of different scene segment schedulers relative to the
opportunistic 1st scheduler. Lower values are better. Note the narrow data range within
the plot.

scheduler, which is used by all of our other tests.

For each scene, the frame render times are very similar between the conservative and

the opportunistic schedulers, within 0.5% of the opportunistic 1st frame times. Rendering

the scenes using the aggressive scheduler leads to 2 - 7% lower render times (3.4% on

average). Compared to the other schedulers, the aggressive scheduler succeeds in keeping

more scene segments in the working set per cycle on average: 7 - 17% for all but the

small scenes (39% more for Fairy Forest and 51% more for Crytek Sponza). This translates

directly into a reduction in TP stalls due to waiting for ray buckets to be fetched from

DRAM, and thus faster rendering speeds. A larger number of scene segments in the

working set potentially enables a larger pool of rays to be distributed for processing at

any given time.

The DRAM traffic and energy use are not shown because the difference between sched-

ulers results in at most 0.7% and 1.3% respectively across all scenes.

5.2.7 Architectural Design Space Exploration

In this section, we evaluate the sensitivity of the dual streaming architecture perfor-

mance to different configuration parameters. Unless specified, each test isolates a specific

parameter which modifies the default configuration specified in Section 5.2.2. We evaluate

the performance of each configuration by considering the render time, the total DRAM

traffic and the DRAM energy used to generate a single image frame.
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5.2.7.1 Number of TPs per TM

Let’s consider the impact on performance when varying the number of TPs making up

each TM, shown in Figure 5.11. The chip is comprised of 128 TMs. Note that the increases

in the number of TPs per TM do not increase the sizes or the number of resources shared

within each TM like the L1 data cache.

When the number of TPs per TM doubles from 8 to 16, the rendering performance

measured in frames per second improves by 1.62× on average. Doubling again to 32 TPs

per TM achieves a modest further rendering performance increase to 1.86× on average

compared to 8 TPs per TM. Further increases in the number of TPs per TM do not improve

the rendering frame rate mainly because the global hit record updater unit becomes over-

subscribed, since it can service at most 16 simultaneous requests per cycle and maintains

a small queue of requests storing at most 64 updates. A lesser factor is the ray bucket

size: each bucket holds at most 63 rays which, even when full, may not provide enough

computational work for all TPs within a single TM.

The DRAM energy decreases by 9− 24% when the number of TPs per TM increases

from 8 to 16. This decrease can be attributed to an increase in the DRAM row buffer hit

rate with more DRAM accesses reusing the same row buffer, thus requiring fewer new

rows to be fetched and use less energy overall. As the number of TPs per TM continues to

grow, the row buffer hit rate decreases somewhat thus increasing the total DRAM energy.

We select 16 TPs per TM for the default configuration of the dual streaming architecture

because it provides high render frame rates while keeping the used DRAM energy low

across all scenes.

5.2.7.2 Number of TMs in a Chip

Let’s consider the impact on performance when varying the total number of TMs mak-

ing up the dual streaming chip, shown in Figure 5.12. Each TM has 16 thread processors.

Increasing the number of TMs making up the chip increases both the available compute in

terms of the total number of TPs and the total size of on-chip memories shared between all

TPs in a TM, like the L1 data cache and ray buffers.

As the number of TMs (and thus the total number of TPs) increases, the frame rendering

performance measured in frames per second scales almost linearly up to 128 TMs. On
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Figure 5.11: Performance of the dual streaming chip with 128 TMs while varying the
number of TPs in each TM. The vertical gray bar highlights the default configuration with
16 TPs per TM. Lines are colored based on the scene type. Higher values are better in the
top plot, while lower values are better in the other plots. Note the narrow data ranges
within the plots.
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Figure 5.12: Performance of the dual streaming chip when varying the number of TMs,
each containing 16 TPs. The vertical gray bar highlights the default configuration with 128
TMs. Lines are colored based on the scene type. The red line in the top plot denotes perfect
scaling following the number of TMs. Higher values are better in the top plot, while lower
values are better in other plots. Note the narrow data ranges within the plots.
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average across all scenes, for a chip with 128 TMs, the number of frames per second

increases 12.8× that of 8 TMs, which is 80% efficiency relative to the perfect linear scaling

(16×). The rendering speed stops scaling as the number of TMs increases beyond 128

because the global hit record update unit becomes over-subscribed.

DRAM traffic is shared well with the increase in the number of TMs. Comparing

the traffic between 512 and 8 TMs per chip, a 64× increase, results in a reduction in

DRAM traffic of at most 23% (18% on average). The major contributor to this drop is a

significant reduction in the number of cache lines transferred for ray writes as the number

of TMs increases. The remaining DRAM traffic (scene and ray stream reads) remain fairly

constant.

The amount of energy used by DRAM to render a single frame drops significantly

as the number of TMs increases from 8 per chip. The configuration with 128 TMs uses on

average 21% of the DRAM energy used by the configuration with 8 TMs. The large drop in

energy corresponds to a huge drop in the background DRAM energy spent on maintaining

open row buffers without servicing any reads or writes. This background energy takes up

74− 83% of the total for the 8 TM configuration and 25− 40% of the total for the 128 TM

configuration. The background energy is correlated with the length of time taken to render

a frame, thus much longer render times correspond to larger background energies.

We select 128 TMs per chip as the default configuration of the dual streaming archi-

tecture because it provides high render frame rate while reducing the DRAM traffic and

energy significantly.

5.2.7.3 Hit Record Updater

To evaluate the impact the chip-wide hit record updater has on the dual streaming

architecture, we consider two parameters: the hit record updater issue width and the

internal queue size that stores the individual hit record updates while the data is fetched

from DRAM. These tests rely on the default configuration with 128 TMs each with 16 TPs

for a total of 2048 threads. A larger number of threads puts an increased pressure on the

hit record updater unit, requiring increasing both its issue width and its internal queue

size.

Increasing the issue width of the hit record updater from 16 to 64 has a negligible (<
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1%) effect on the frame render time, DRAM traffic and DRAM energy across the tested

scenes.

Increasing the internal queue size from 64 to 1024 results in at most 3% improvement in

frame render times across all tested scenes but Dragon Sponza which achieves about 12%

improvement using the queue holding at least 256 items. For this scene, hit record updater

stalls waiting for data to arrive from DRAM rather than DRAM memory controller being

full of requests. The performance does not improve much with the increase in queue size

because the majority of hardware stalls occur while waiting for either ray or scene data.

Increasing the queue size reduces the DRAM traffic and energy by at most 2% across all

scenes.

We configure the hit record updater with issue width of 16, the same as the number

of TPs in each TM, and the internal queue sized at 64 entries. Even though increasing

this to 128 or 256 would improve the frame render times, the improvement is limited for

tested scenes other than Dragon Sponza. Most importantly, the hit record updater is not a

significant bottleneck for the dual streaming architecture configured with the 2048 threads.

5.2.7.4 Ray Bucket Size

Let’s consider the impact on performance when varying the ray bucket sizes, shown in

Figure 5.13. Smaller ray buckets can help assign more TMs to process rays from a given

queue; however, smaller ray buckets store fewer rays each and can result in under-utilizing

compute resources in a single TM because some TPs could stall without rays to process.

Larger ray buckets, on the other hand, avoid work starvation within a single TM, but at

the potential cost of poor work distribution across TMs.

The frame render times show these effects. Ray buckets 2KB in size provide the optimal

rendering performance across all scenes except for Dragon. Using bucket sizes other than

2KB results in the frame render times increasing up to 8%. The Dragon scene however

performs best when using smaller ray bucket sizes because for this particular scene there

are fewer rays as ray depths increase. The dragon statue has few concave sections and is

placed in empty space, both of which result in few interreflections and thus decreasing ray

counts as depth increases. In fact, the ray count decreases with depth faster for the Dragon

scene than for any other scene tested, as shown in Figure 5.14.
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Figure 5.13: Performance of the dual streaming chip with different sizes of ray buckets.
Data for each scene is normalized to the performance of the 2KB ray buckets. The vertical
gray bar highlights the default configuration. Lines are colored based on the scene type.
Lower values are better. Note the narrow data ranges within the plots.
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Figure 5.14: Total number of rays traced at different depths for each scene. The count at
depth 0 includes only the primary rays originating at the camera. Only the shadow rays
are traced at depth 6.

Using ray buckets smaller than 2KB in size can increase the total amount of DRAM

energy used to render the frame by up to 13.4% when compared to 2KB ray buckets.

Using 4KB ray buckets uses almost the same amount of DRAM energy as 2KB ray bucks

(a reduction of less than 0.2% on average across all scenes).

We select 2KB size for the ray buckets as the default configuration of the dual streaming

architecture because it provides high render frame rates while reducing the DRAM traffic

and energy.

5.2.7.5 Image Size

Let’s consider the impact on performance when varying the output image resolution,

as shown in Figure 5.15. The chip configuration remains constant, with 128 TMs each with

16 TPs for a total of 2048 threads. As the image resolution grows, the number of pixels and

thus rays to be traced, grows quadratically.

As shown in Figure 5.15, the frame render times increase similarly to the increases in

the number of pixels. Each scene has a different scaling factor that still varies slightly

depending on the output image resolution. The growth profile for the frame render times

suggests that the dual streaming performance is limited by the ray stream. The DRAM

traffic and energy also scale proportionally to the image resolution.

We select the image resolution of 1024× 1024 because it is large enough to represent

typical use-cases and generates a large set of random rays without incurring extremely
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Figure 5.15: Performance of the dual streaming chip with 128 TMs while varying the
resolution of out the output image, shown by a single dimension. The vertical gray bar
highlights the default configuration with 1024× 1024 image resolution. Lines are colored
based on the scene type. The red lines show perfect linear scaling. Lower values are better.
Note the logarithmic scale on the y-axis within the plots. The missing data generated too
many rays for indexes used by the implementation of the dual streaming architecture.
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long simulation times.

5.2.7.6 Scene Segment Size

Let’s consider the impact on performance when varying the scene segment size, as

shown in Figure 5.16. The scene buffer size remains constant at 4MB across all scene

segment sizes, thus the scene buffer would contain fewer scene segments as the segment

size increases. Larger scene segments require a fewer number to represent an entire scene,

which leads to lower ray duplication rate and thus lower DRAM traffic from a reduction

in the ray stream size. On the other hand, the amount of on-chip memory assigned to the

scene buffer is limited by the chip area, which limits the working set size and thus how

many scene segments can be processed simultaneously.

Scene segments 64KB in size result in reasonable frame render times across all tested

scenes. Compared to 64KB scene segments, using 32KB scene segments increases the frame

render time by 3%, while 128KB scene segments decrease the frame render time by 3% on

average across all scenes.

Using the larger scene segment sizes reduces the DRAM traffic. Compared to 64KB

scene segments, the total traffic is larger by 8% on average across all scenes when using

32KB scene segments. Using 128KB scene segments decreases the total DRAM traffic by

5% on average. The reduction in DRAM traffic for larger scene segment sizes is driven

entirely by the reduction in the ray stream traffic because the ray duplication is lower. The

reduction in ray duplication occurs because the scene can be represented with fewer scene

segments, thus any given ray can enqueue into fewer number of ray queues. Compared to

64KB scene segments, smaller scene segments (32KB) increase the ray duplication by 20%

while larger scene segments (128KB) decrease the ray duplication by 9% on average across

all scenes.

Using the larger scene segment sizes reduces the DRAM energy used to render each

frame. Compared to 64KB scene segments, using the smaller scene segments (32KB) in-

creases the DRAM energy usage by 5% while using the larger scene segments (128KB)

decreases the DRAM energy usage by 6% on average across all scenes. Unlike the other

scenes, Dragon uses 3% less DRAM energy when the scene segment size is 16KB relative

to 64KB. Most of the energy savings is due to the lower background power because the
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Figure 5.16: Performance of the dual streaming chip with different sizes of scene segments.
Data for each scene is normalized to the performance of the 64KB scene segments. The
vertical gray bar highlights the default configuration. Lines are colored based on the scene
type. Lower values are better. San Miguel data for 16KB size is missing because the
configuration generated too many segments for 16-bit address representation. Note the
narrow data ranges within the plots.
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frame rendering time is much lower for this scene when using 16KB scene segments.

Overall, scene segments 64KB in size result in reasonably low frame render times across

all tested scenes, although increasing the size to 128KB could reduce the DRAM energy

and traffic but with an increase in frame render times for some scenes (Fairy Forest, Crytek

Sponza, and Dragon). We choose 64KB as the default scene segment size since on balance

it provides better frame rendering times while conserving DRAM traffic and energy.

5.2.7.7 Scene Buffer Size

Let’s consider the impact on performance when varying the size of the global scene

buffer, as shown in Figure 5.17. All tested configurations use scene segments 64KB in size

and the chip with 128 TMs each with 16 TPs (2048 total threads). A larger scene buffer

contains more scene segments, which increases the number of scene segments that can be

traversed in parallel, potentially allowing more rays to be traced simultaneously.

The frame render times are essentially the lowest when the scene buffer is 4MB in size.

Decreasing the buffer size increases the frame render times by 2% for 2MB and 12% for

1MB on average across all scenes. Increasing the buffer size to 8MB has a negligible effect

on the frame render time overall. The buffer size has a very small effect on the frame

render times (less than 0.5%) for small scenes (Fairy Forest and Crytek Sponza) because

they mostly fit into the on-chip scene buffer. The frame render time for the Dragon scene

becomes much longer as the scene buffer size decreases because TPs stall waiting for rays,

since there are not enough ray buckets available for simultaneous processing. The tested

configuration uses 128 TMs. Thus a 1MB scene buffer with 16 different scene segments

can offer at most 16 different ray queues to process simultaneously. When each ray queue

contains a few ray buckets for processing, which happens at higher ray depths for the

Dragon scene, the chip’s rendering frame rate becomes limited by the total number of

scene segments that can be processed in parallel.

Based on our experiments, there is not a specific global scene buffer size that clearly

reduces the total DRAM traffic across all scenes. Most of the data is within 1% of the 4MB

performance.

We choose 4MB as the size of the global scene buffer because it provides the lowest

frame render times and DRAM energy across all scenes.
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Figure 5.17: Performance of the dual streaming chip while varying the scene buffer size.
Data for each scene is normalized to the performance of the 4MB scene buffer size. Lower
values are better. Note the narrow data ranges within the plots.

5.3 Comparison to STRaTA
Like STRaTA our hardware implementation uses the SPMD paradigm, utilizes fixed-

function ray intersection pipelines, and relies on BVH treelets as a means of accessing scene

data. However, beyond these similarities in basic components, which would be present in

any parallel hardware, our dual streaming hardware design bears little resemblance to

STRaTA. First of all, the dual streaming architecture fundamentally alters how data flows

through the processor and how it is accessed: perfect prefetching for the dual stream-
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ing architecture versus on-demand cache loads for STRaTA. The traversal algorithm each

architecture implements is also fundamentally different: the dual streaming architecture

processes all rays within a given treelet before moving on to the next in a fixed order,

whereas STRaTA processes treelets in an unknown order, on-demand as they fill with

rays, and often some rays reenter treelets (thereby refetching the same scene data from

DRAM). Another fundamental difference is that the dual streaming architecture traces

ray wavefronts starting with the primary rays followed by secondary rays in separate

passes, organized into ray streams that reside in DRAM. This enables many more rays

in flight simultaneously, and combined with the deterministic traversal order, ensures that

any treelet is loaded at most once per pass. Even if STRaTA was capable of spilling rays

from on-chip ray queues into DRAM to allow more rays in flight, its traditional depth-first

traversal would force it to (potentially) reload treelets many times. In comparison to

STRaTA, the dual streaming architecture uses a completely different scheduler with dif-

ferent tasks, it contains a read-only scene buffer instead of a large L2 data cache, contains a

dedicated hit record updater unit, and relies on an input ray staging buffer per TM. In other

words, any similarity between the two architectures is limited to the design of individual

TPs and TMs and the fact that treelets are used to split the scene data.

5.4 Scene Data Compression
The dual streaming architecture stores the scene data in a convenient but uncompressed

manner (Figure 5.18). The layout in memory can be improved in several ways. The first

is a compact representation of the BVH nodes. In our implementation of the compressed

scene stream layout for dual streaming, the size of interior nodes is reduced from 16 words

(64B) to 9 words (36B) and the size of leaf nodes is halved from 2 words (8B) to 1 word (4B).

The second improvement stores the triangle vertex data such that it can be reused across

many triangles in an individual scene segment. Additionally, all addresses are stored as

offsets from a given location rather than absolute values. This section discusses the effects

on the performance of the dual streaming architecture provided by this scene compression

scheme. Recent work has seen a resurgence of approaches aimed to compress scene data

and improve ray tracing performance [1, 10, 35, 66, 71, 72, 86, 87, 90, 125, 145]. Investigating

the effects of more aggressive compression schemes is left for future work.
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(a) Uncompressed BVH Nodes. Interior nodes use 16 words (64 bytes), while leaf nodes use 2 words (8 bytes).
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itreelet
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(b) Uncompressed BVH Treelets. Each node is stored according to (a). Boxes are colored based on data type:
gray for interior nodes (I), blue for leaf nodes (L), and green for triangles (T). Arrows indicate pointers from a
node to its first child node or to the first triangle.
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(c) Compressed BVH Nodes. Interior nodes use 9 words (36 bytes), while leaf nodes use 1 word (4 bytes).
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itreelet treelet i+1

(d) Compressed BVH Treelets. Each node is stored according to (c). Boxes are colored based on data type: red
for treelet header (H), gray for interior nodes (I), blue for leaf nodes (L), green for triangles (T), and orange for
triangle vertex data (V). Arrows indicate pointers from a node to its first child node or to the first triangle and
from a triangle to its vertices.

Figure 5.18: In-memory layout for the uncompressed (a) - (b) and the compressed (c) - (d)
scene streams that consist of BVH treelets.

To reduce the number of instructions used during ray traversal by decompressing axis-

aligned bounding boxes, we modify the dedicated ray-box intersection pipeline unit to

consume the quantized box representation directly. The implementation would require

some bit swizzling and a special fused multiply-add instruction. We assume this adds just

two cycles of latency to the intersection pipeline.

5.4.1 Memory Layout

The compressed scheme stores the acceleration structure nodes similarly to the un-

compressed scheme (Section 4.1) but includes some small modifications, Figure 5.18. For

internal nodes, the biggest reduction in size is because the AABBs are quantized to six
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16-bit integers from six 32-bit floating point values, saving 6 words (24B) in storage per

AABB. Each word packs the bounds for a single axis: the maximum is in the upper 16

bits and the minimum is in the lower 16 bits. The data is quantized relative to the fully

uncompressed AABB of each scene segment.2 Another word is saved from the internal

node storage by combining the node header with the address of the left child. Instead of

using a single word for each, the header needs only 8 bits and the address relies on the

remaining 24 bits to store an offset from the address of the current node. The storage for

leaf nodes can be halved by compacting the node header in a similar way.

Storing scene segments changes more significantly, Figure 5.18d. The compressed rep-

resentation adds a 7 word header in the beginning, which stores the uncompressed AABB

for the scene segment (6 words) and an address for the first triangle in the scene segment (1

word). Nodes are stored immediately after the scene segment header. All triangles within

the scene segment follow, with unique vertex data saved at the end of the scene segment.

Leaf nodes store the address of their first triangle as an offset from the address stored in

the scene segment header. Each triangle stores pointers to the individual vertices as three

16-bit offsets from the current triangle address using 6 bytes. Neighboring triangles are

interleaved sharing a word: the third vertex offset of a triangle 2i is stored in the upper 16

bits, while the first vertex offset of the triangle 2i + 1 is stored in the lower 16 bits. Each

vertex is stored as uncompressed floating point values, each using 3 words (12B).

5.4.2 Performance Effects

We show the performance of the outlined scene stream compression scheme in Ta-

ble 5.3. Overall the scene data requires 62% less storage on average across all tested scenes

but San Miguel (43% less). The number of treelets representing each scene is halved (57%

fewer) for all tested scenes but San Miguel (only 22% fewer). Although the compression

significantly reduces the number of cache lines transferred for the scene stream (at most

60%), the effect on the total data transferred from DRAM is not as pronounced (4− 23%)

because the ray stream data transfer has not been reduced as much. The small reduction

2One can reduce the space for the bounding boxes in half again by avoiding the storage of redundant
planes, like the Compact BVH method [35]. Applying such an approach for our test scenes would reduce the
scene data stream by an additional ∼ 15%, however with a large increase in the complexity of the ray tracing
algorithm implementation.
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Benchmark Small High Depth

Dragon Dragon Dragon San Fairy Crytek Vegeta- Hairball
Box Sponza Miguel Forest Sponza tion

Scene Size (MB) 129.29 129.28 914.16 1,493.54 24.98 38.00 149.91 369.97
Num Treelets 1,586 1,600 11,276 17,421 293 455 1,682 3,972
Render Time (ms/frame) 18.08 66.32 40.93 79.61 17.05 44.60 68.56 63.27
Rays Traced per sec (M) 114.8 177.4 234.8 114.6 345.6 204.1 85.4 63.5
Ray Duplication 4.55 3.14 4.18 15.19 3.00 8.55 15.15 16.02
DRAM Energy (J) 1.15 (42%) 4.66 (40%) 4.47 (57%) 8.12 (50%) 1.61 (53%) 4.51 (50%) 4.41 (41%) 4.56 (43%)

On-Chip Memory Energy (J) 1.52 (55%) 6.54 (57%) 3.10 (40%) 7.63 (47%) 1.30 (43%) 4.14 (46%) 5.96 (55%) 5.75 (54%)

Compute Energy (J) 0.09 (3%) 0.36 (3%) 0.23 (3%) 0.53 (3%) 0.10 (3%) 0.32 (4%) 0.37 (3%) 0.33 (3%)

Total Energy (J) 2.76 11.56 7.80 16.28 3.01 8.96 10.74 10.64
Avg. Bandwidth (GB/s) 140.21 114.98 271.30 255.61 230.35 237.40 142.75 142.88
Ray Stream $ Lines (M) 11.92 (30%) 45.81 (38%) 43.94 (25%) 146.34 (46%) 18.4 (31%) 80.56 (49%) 94.03 (61%) 76.22 (54%)

Scene Stream $ Lines (M) 7.54 (19%) 8.0 (7%) 54.31 (31%) 72.27 (23%) 1.50 (3%) 2.26 (1%) 8.20 (5%) 19.18 (14%)

Shading $ Lines (M) 17.43 (44%) 42.38 (36%) 45.00 (26%) 46.22 (15%) 30.53 (52%) 45.42 (27%) 32.46 (21%) 26.99 (19%)

Hit Record $ Lines (M) 2.74 (7%) 22.97 (19%) 31.04 (18%) 53.93 (17%) 8.33 (14%) 37.21 (22%) 18.28 (12%) 18.89 (13%)

D
ua
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Total $ Lines Trans. (M) 39.6 119.2 173.5 317.9 58.7 165.4 152.9 141.3

Scene size (MB) 48.70 48.70 344.10 845.71 9.38 14.38 58.51 134.74
Num Treelets 679 671 4,767 13,592 132 204 776 1,625
Render Time (ms/frame) 7.25 26.66 38.37 84.00 17.08 47.67 68.31 57.23
Rays Traced per sec (M) 287.2 440.5 250.0 108.6 342.2 191.1 85.7 69.4
Ray Duplication 3.72 2.60 4.01 15.93 2.65 8.00 12.94 11.98
DRAM Energy (J) 0.71 (64%) 2.85 (56%) 3.91 (57%) 8.16 (53%) 1.58 (57%) 4.42 (51%) 4.17 (42%) 3.71 (42%)

On-Chip Memory Energy (J) 0.37 (33%) 2.01 (40%) 2.65 (39%) 6.62 (43%) 1.08 (39%) 3.77 (44%) 5.33 (53%) 4.71 (53%)

Compute Energy (J) 0.04 (4%) 0.22 (4%) 0.29 (4%) 0.70 (5%) 0.11 (4%) 0.41 (5%) 0.47 (5%) 0.39 (4%)

Total Energy (J) 1.12 5.07 6.85 15.48 2.77 8.61 9.96 8.82
Avg. Bandwidth (GB/s) 273.53 239.15 230.77 237.82 206.26 213.74 126.29 120.34
Ray Stream $ Lines (M) 8.23 (27%) 32.56 (33%) 41.07 (30%) 152.52 (49%) 16.16 (29%) 75.29 (47%) 80.38 (60%) 54.39 (51%)

Scene Stream $ Lines (M) 3.23 (10%) 3.37 (3%) 22.30 (16%) 57.97 (19%) 0.61 (1%) 0.94 (1%) 3.67 (3%) 7.73 (7%)

Shading $ Lines (M) 16.93 (55%) 41.48 (42%) 44.54 (32%) 47.54 (15%) 30.31 (55%) 45.68 (29%) 33.33 (25%) 28.35 (26%)

Hit Record $ Lines (M) 2.58 (8%) 22.22 (22%) 30.49 (22%) 54.12 (17%) 7.96 (14%) 37.28 (23%) 17.42 (13%) 17.15 (16%)

D
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Total $ Lines Trans. (M) 31.0 99.6 138.4 312.1 55.0 159.2 134.8 107.6

Table 5.3: The performance results comparing the effects of compressing the scene stream
for the dual streaming architecture. Note $ means cache and M means millions.

in the ray duplication rate also supports this conclusion. The energy used and time taken

to render a single frame are reduced.

5.5 Limitations
The main feature of the dual streaming algorithm is the refactoring of the ray tracing al-

gorithm into two predictable data streams where the scene data is loaded at most once per

ray pass. At a very high level this is in some ways a reversal from traditional algorithms.

Instead of tracing a ray to completion while loading scene data (treelets) on demand, a

portion of the scene is loaded once and all rays that intersect with it are streamed through.

While the memory bandwidth required for scene data is reduced significantly, the dual

streaming architecture requires bandwidth for ray data (Figure 5.8). This, in turn, becomes

an interesting challenge for the current version of the proposed hardware - how to manage

the memory bandwidth required for the ray traffic?
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Architecture GB/s MRPS Bytes/Ray
Aila et al. [1] 2.0 - 3.8 GB/fr. 3.3 MR/fr. 598 - 1137
RayCore [95] 0.4 - 0.6 18 - 20 20 - 33

Liktor et al. [86] not given 155 - 335 61 - 298
(bench) 138 - 267 73 - 135 1015 - 3021

STRaTA (small) 99 - 192 233 - 366 271 - 437
(depth) 230 - 255 112 - 121 1891 - 2269
(bench) 115 - 271 115 - 235 648 - 2230

Dual Streaming (small) 230 - 237 204 - 346 667 - 1163
(depth) 143 64 - 85 1672 - 2250

Dual Streaming (bench) 230 - 274 109 - 441 542 - 2190
Compressed (small) 206 - 214 191 - 342 603 - 1119

Scene Stream (depth) 120 - 126 69 - 86 1473 - 1734

Table 5.4: Main memory utilization measured in bytes per ray for comparison architec-
tures (lower is better). GB/s is the total main memory bandwidth and MRPS is millions of
rays traced per second.

One way to compare to other systems is by considering how much data the system

fetches per ray, shown in Table 5.4. For example, in terms of Bytes/Ray our dual streaming

implementation is within a factor of two from the seminal BVH treelet architecture [1]. One

reason for this difference is that the dual streaming architecture can not perform early ray

termination. This can generate a lot of extra ray traffic between treelets. For scenes with

high depth complexity (Vegetation and Hairball), this problem is increased because the

number of treelets a ray intersects is proportional to the number of spatially distant leaf

nodes it must visit.

We can compare against another architecture targeting mobile platforms, RayCore [95].

It benchmarks using small scenes that fit nicely into on-chip caches and therefore tradi-

tional algorithms that keep rays on chip result in very small traffic to main memory. While

the dual streaming architecture still reduces the scene traffic significantly, small scenes

show the overhead of ray streams.

While the dual streaming architecture reduces scene traffic by introducing fixed scene

segment traversal order, other researchers have made good progress in compressing the

BVH data and thus reducing the number of bytes transferred per ray, for example [86].

This method compresses BVH layouts in a manner similar to the method by Yoon and

Manocha [146], but adds modifications to compress treelet-interior pointers and optimize

layout for caches. A direct comparison of the Bytes/Ray metric is complicated by the dif-
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ferent memory architecture and heavy instancing in some of their test scenes. Additionally,

the authors use index nodes to achieve a 50% reduction in L2 to L1 bandwidth, which we

do not attempt. The dual streaming architecture is largely orthogonal to such memory

optimizations. Applying a similar scene data compression technique could help reduce

scene traffic further, but more importantly it would reduce the number of scene segments,

thus reducing both ray duplication and ray traffic to DRAM.

These comparisons offer only a partial evaluation because raw memory traffic does

not consider DRAM management like row buffer hit rates (see Section 2.2.3.2) which can

have a huge impact on the actual latency and power of the memory system. In fact, it is

possible for the memory bandwidth to increase while reducing access latency [76]. The

comparisons also point out the main challenge in extending the dual streaming architec-

ture: managing, minimizing, and compressing ray traffic (see the discussion of future work

in Chapter 6).

Because the dual streaming architecture processes wavefronts of rays, renderers and

scenes that generate many ray bounces would require many passes, which could result in

an undesired drop in processor utilization and an increase in memory traffic per ray. A

limit to the number of ray bounces would bound this, but also introduce rendering bias,

which, depending on the scene and light transport, may or may not be negligible.

The dual streaming architecture does not directly address building the acceleration

structure and scene segments on chip. Because the dual streaming architecture is envi-

sioned as a graphics accelerator, an external processor would generate the scene stream

and load it into DRAM before rendering a frame. However, the dual streaming architecture

could be modified to rely on its general purpose execution units for this task.



CHAPTER 6

FUTURE WORK AND CONCLUSION

Because the dual streaming architecture completely reorders the traversal within ray

tracing to address the fundamental problems of the traditional traversal order, it also

exposes new and interesting challenges. They represent fertile ground for additional opti-

mizations and future research. We discuss some of these challenges here.

Treelet Assignment Optimizing treelet assignment to limit ray duplication and thus

ray bandwidth is likely to yield better performance than optimizing to accelerate the traver-

sal of individual rays. For example, it is unclear if treelets should prefer a shallow structure

or if they should be constructed in a depth-first fashion producing deeper treelets. We

would expect a combination of the two approaches to deliver superior performance.

Treelet Traversal Order Once a scene segment is processed, any and all of its child

segments can be selected into the working set. Adjusting the predefined scene segment

traversal order based on the structure of the BVH or altering the traversal order on-the-fly

based on information gathered during the traversal of the parent scene segments can

provide substantial performance benefits. For example, in our current implementation

it is likely that rays are not traversed through the closer scene segment first, reducing the

effectiveness of any early ray termination scheme. Modifying the scene segment traver-

sal order to be more amenable for early ray termination without significant increase in

memory traffic is an important open problem.

Early Ray Termination Unlike traditional ray tracing, implementing early ray ter-

mination is not trivial with the dual streaming algorithm. Since the ray stream excludes

unique hit information shared by ray duplicates, the hit information must be gathered

from the hit record separately. There are several alternatives to our current implementa-

tion. For example, if the hit record is not already on chip, it might be more beneficial for

the pre-test approach to traverse the ray anyway, instead of stalling until the hit record
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Figure 6.1: Number of rays simultaneously in flight for the San Miguel scene. Each ray
wavefront is distinguished by a triangular spike in the number of rays. Vertical gray bars
indicate durations of the ray generation phase with depths marked on top. Note the ratio
of time spent on ray generation and traversal.

read is serviced. Alternatively, a ray waiting for the hit record data can be simply skipped

until the data arrives. Also, the hit information can be requested and cached for the entire

bucket of rays before processing or even scheduling it.

Processing Ray Wavefronts The proposed dual streaming architecture processes all

rays at a given depth at once and continues onto the rays at the next depth only once

the current wavefront finishes. As a result, the algorithm operates in phases, each of

which can be categorized by a triangular shape seen in the total number of rays in flight

(Figure 6.1). Improving the render times would likely rely on overlapping processing of

different wavefronts, relaxing the fixed scene segment traversal order allowing reloading

some of the scene segments, or allowing a ray to be traversed to completion and loading

the necessary scene data on demand.

Data Compression The ray stream is the major component of the memory bandwidth

used by the dual streaming architecture. Therefore, compressing the duplicated ray data

might significantly improve the performance and reduce the energy cost [66]. While the

scene stream uses only a fraction of the memory bandwidth, compressing the scene data

can still be helpful in reducing the number of scene segments and thereby reducing the

number of duplicated rays. We evaluated a simple scene stream compression scheme,

which helps improve the rendering performance slightly, a more aggressive compression
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is required to achieve significant gains. Reducing the ray duplication rate would reduce

the total memory bandwidth further.

On-Chip Ray Storage Another way to reduce the effects of ray stream traffic to DRAM

is by storing all of the required rays on chip, where the bandwidth is significantly higher

than the off-chip DRAM bandwidth. Unfortunately, on-chip SRAM storage is very limited

by the available area. An architecture could store the ray data within stacked DRAM

memory placed above the chip or spread across many processing chips connected together.

Memory Optimizations It may be possible to partition streams between on-chip and

off-chip DRAM, in order to reduce energy further. In particular, because the bandwidth

requirements for the scene stream are low and the access latency is hidden by prefetching,

the scene data can reside on a slower off-chip memory. Furthermore, it may be possible

to lower the operating frequency of the off-chip memory serving the scene stream to

significantly reduce the energy use without impacting performance negatively. Moreover,

the dual streaming architecture has the potential to take the full advantage of the upcoming

high bandwidth memory (HBM) systems [60] and hide their additional latency through

streaming.

DRAM Modifications Ray streams effectively convert DRAM into a temporary stag-

ing buffer that writes and reads rays only once. Thus, after ray data is read from DRAM,

there is no need to preserve it, which requires DRAM to write the contents of the row buffer

back thus consuming energy and contributing to memory latency. A DRAM modified for

ray streams could benefit from “destructive reads” which would avoid these costs.

Additional Streaming Opportunities Our scene segment traversal guarantees that

the scene geometry is accessed at most once per ray wavefront pass. This structure can be

used for rendering extremely large scenes that cannot fit in memory by streaming them

from a disk or other high latency locations [32].

Dynamic Scenes The presented dual streaming architecture assumes the scenes are

static. Supporting dynamic scenes presents several challenges. First, the rendering algo-

rithm must integrate over the frame time interval by tracing rays through the dynamic

scene, typically achieved with time sampling. Secondly, specifying geometry in motion

requires storing a representation of the motion for each primitive, typically using two or

more keyframes each at a specific frame time. This requires the acceleration structure
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capable of storing and bounding such motion [42, 135]. Third, the acceleration structure

should be able to get updated or rebuilt quickly enough to generate the image for the next

frame.

Enabling support for the dual streaming architecture can be achieved in several ways.

One way is to modify the BVH treelets to store the keyframes (for both nodes and triangles)

in each treelet and simply update the triangle positions from frame to frame. However, as

the scene evolves over time, the ray tracing performance will degrade because the SAH

cost of the BVH tree would increase without updating or rebuilding it [74]. Alternatively,

one could triangulate the surface of the volume representing the triangle motion, and

intersect against it directly [119]. This method can use the acceleration structure and ray

traversal as provided by the dual streaming architecture without modifications to account

for time.

One could also consider tracing multiple animation frames simultaneously, which would

improve the hardware utilization by tracing rays from different frames each at different

depths.

Shading The proposed dual streaming architecture focuses on the ray intersection

and traversal phase of the path tracing algorithm. The tests rely on simple diffuse ma-

terials without textures, but both real-time and offline rendering applications use more

sophisticated material models. Fortunately, the existing SIMD GPU architectures are great

at shading hit points in parallel provided the necessary material texture data is available

(memory access latency is hidden by letting each SIMD multiprocessor compute several

kernels simultaneously). SIMD architectures are not great at ray traversal because of the

ray divergence both in terms of data and control-flow. However, adding dedicated ray

traversal hardware into the graphics rendering pipeline could enable tracing rays from

within shading kernels to generate superior reflections and shadows.

At the time of writing, several games that use the dedicated ray tracing hardware

within NVIDIA’s Turing architecture rely on hybrid rendering methods where the pri-

mary visibility and material properties are generated using the dedicated rasterization

hardware. For a subset of pixels output from the rasterization pass, secondary effects like

reflections, shadows, and even global illumination are generated during the shading pass.

Games apply denoising algorithms to the ray tracing output to reconstruct and filter the



103

secondary effects across the image. Combining SIMD-style processing within the dual

streaming architecture to create a hybrid rendering system is an interesting direction for

future work.

6.1 Conclusion
We introduced the dual streaming approach that restructures ray traversal into a pre-

dictable process that allows both the scene data and the ray data to be streamed from the

main memory in a highly structured way. This approach is tailored to the fundamental

operation of DRAM memory, where data accessed sequentially from an open row buffer

is dramatically more efficient in both energy and latency than more random accesses. This

streaming approach also eliminates some major bottlenecks inherent in the traditional ray

tracing traversal order.

We also provided a first hardware implementation of the dual streaming algorithm and

test results using a cycle-accurate hardware simulator, showing that our implementation

of the dual streaming architecture already outperforms STRaTA, a highly optimized archi-

tecture for traditional ray tracing, in typical large scenes. Finally, we included an extensive

discussion for potential future improvements to the dual streaming implementation, pro-

viding a new avenue for further research on hardware accelerated ray tracing.
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