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Motivation

intravascular surgery to treat aortic aneurysms
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intravascular surgery to treat aortic aneurysms
patient’s CT scan needed to design stent

takes hours to scan and reconstruct 3D datatakes hours to scan and reconstruct 3D data
fluoroscope – real-time X-ray machine used to 
precisely position stentprecisely position stent

radioactive dye used to mark blood vessels



Motivation
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http://upload.wikimedia.org/wikipedia/en/4/44/Covered_Stent_Graft.jpghttp://www.westondiagnostics.com/images/Preventative/preventaorta.jpg



Motivation

pre-operation video
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Courtesy: Ron Greenberg, Cleveland Clinic
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post-operation video
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Courtesy: Ron Greenberg, Cleveland Clinic



Motivation

raw data rendering desired by doctors
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raw data rendering desired by doctors
data approximation inhibits diagnosis
state of the art is surface-based (typically triangles)

cost of hardware is extremely high
$60,000-$240,000 for VolumePro 1000 workstation1

use limited to one workstation
operating room use will improve intravascular 
surgerysurgery

use visualization to approximate output of 
fluoroscopep
decreases exposure of patient to radiation

1. http://imaging-radiation-oncology.advanceweb.com/sharedresources/advanceforioa/resources/DownloadableResources/AR110103_p120chartsmart.pdf



Previous Work

Marching Cubes [Lorensen Cline ‘87]
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Marching Cubes [Lorensen, Cline 87]

Raycasting [Levoy ’88] [Levoy ‘90]

Shear Warp [Lacroute Levoy ‘94] [Sweeney Mueller ‘02]Shear-Warp [Lacroute, Levoy ‘94] [Sweeney, Mueller ‘02]

Splatting [Westover ’90] [Mueller, Crawfis ‘98] [Zwicker et. al. ‘04] 

S i l H dSpecial Hardware [Kruger, Westermann ’03] 

Cube [Kreeger, Kaufman ‘99] 

Vi dVizard [Knittel, Strasser ‘97] [Meissner et. al. ‘02] 

VolumePro [Pfister et. al. ‘99] 



Special Hardware: VolumeProp
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benefits (VolumePro 1000)benefits (VolumePro 1000)
very powerful
up to 10-15fps for 3D data sets (1st hit raycasting)p p ( y g)
FDA approved

problems
very expensive
algorithms are not easily extended
hardware itself not easily extended

http://www.terarecon.com/products/vp_prod_med.htm
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Introduction: CT Dataset

Hounsfield Units HU
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Hounsfield Units, HU
CT unit of measure
range: [-1024, 3071] or [0, 4095]range: [ 1024, 3071] or [0, 4095]
air (-1000), fat (-50), water (0), bone (1000+)

currentlycurrently
512 x 512 pixels per slice
12 bits per voxel grayscale data12 bits per voxel grayscale data

future
1024 x 1024 pixels per slice1024 x 1024 pixels per slice



Introduction: CT Dataset

dimensions
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dimensions
15.4 x 15.4 x 35.5 in
512 x 512 x 950 voxels512 x 512 x 950 voxels

memory requirements

data (2B per voxel) gradients (12B per voxel)

5122 x 950 475 MB 2.78 GB

10242 x 950 1.86 GB 11.13 GB



Introduction: Illumination Model
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low-albedo formulationlow albedo formulation
homogeneous particle distribution
only single scatteringonly single scattering
emission and absorption

differential eq for light intensitydifferential eq for light intensity

volume rendering integral



Introduction: Basic Idea

consider dataset as a volumetric material
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consider dataset as a volumetric material
simple front-to-back 
raycasterraycaster

V(x) – 3D data
E – eye location
d – ray’s direction
t t start end intersections of ray with volumets , te – start, end intersections of ray with volume
x(t) – sample location inside volume t units along ray



Introduction: Basic Idea

output color:
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output color:

where

transfer functions
- color
- opacity- opacity

n – ray steps between ts and te



Introduction: Transfer Function
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responsible for assigning color and opacity toresponsible for assigning color and opacity to 
a data sample
provided by the userprovided by the user



Introduction: Transfer Function
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responsible for assigning color and opacity toresponsible for assigning color and opacity to 
a data sample
provided by the userprovided by the user
selects emission, diffuse and specular colors

Sample
Color, C Emission Diffuse

Reflection
Specular

Reflection= + +

Blinn – Phong BRDFFrom Color TF

http://upload.wikimedia.org/wikipedia/commons/6/6b/Phong_components_version_4.png
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Accelerations

multiple resolutions
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multiple resolutions
gradient pre-computation
early ray terminationearly ray termination
transparent sample skipping
b i ki hi hbricking hierarchy

set-up
li d t t dnon-linear data storage order

local gradient storage
empty space skippingempty space skipping



Bricks: Set-upp

3D voxel data stored in 1D array in XYZ order
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3D voxel data stored in 1D array in XYZ order



Bricks: Set-upp

reorder to XYZ-ordered bricks arranged in XYZ
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reorder to XYZ ordered bricks arranged in XYZ 
order



Bricks: Data Access Order
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Bricks: Data Access Order
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Bricks: Data Access Order
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Bricks: Data Access Order
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Bricks: Data Access Order
30



Bricks: Data Access Order
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Bricks: Non-linear Data Storage Orderg
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Bricks: Empty Space Skipping

skip empty space at any level in brick

p y p pp g
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skip empty space at any level in brick 
hierarchy via 64-bin binary histograms

data inside a brick

opacity transfer functionp y

combining bins for higher level brick

b i k i t t ifa brick is transparent if
adds < 2% extra memory for 1 level hierarchy



Parallelizing Bricked Raycasterg y
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map to a cluster of 32 dual quad-core nodesmap to a cluster of 32 dual quad core nodes



Parallelizing Bricked Raycasterg y
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map to a cluster of 32 dual quad-core nodesmap to a cluster of 32 dual quad core nodes
exploit independence in data and output pixels
multi core for one nodemulti-core for one node

rays in a brick
volume data subdivisionvolume data subdivision
output image subdivision

many nodesmany nodes
output image subdivision



Multi-Core: Rays in a Bricky
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Multi-Core: Volume Data Subdivision
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split the volume between cores eachsplit the volume between cores, each 
rendering the entire output image



Multi-Core: Volume Data Subdivision
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split the volume between cores eachsplit the volume between cores, each 
rendering the entire output image

rays pass through volume contiguously y p g g y
distance between ray samples constant across 
subvolume boundaries

compositing



Multi-Core: Output Image Subdivisionp g
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each core renders own subimageeach core renders own subimage



Many Nodes: Output Image Subdivisionp g
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Results
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datasetsdatasets
accelerations

brick sizesbrick sizes
data storage order
gradient computationgradient computation

scalability
number of coresnumber of cores
number of nodes



Results: Datasets: Pre-Operationp
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512 x 512 x 928 voxels512 x 512 x 928 voxels



Results: Datasets: Post-Operationp
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512 x 512 x 768 voxels512 x 512 x 768 voxels



Results: Datasets: CT14
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512 x 512 x 768 voxels512 x 512 x 768 voxels



Results: Dataset Views
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Bottom View Front View Side View

45⁰ Side View 45⁰ Corner View



Results: Single-Core: Brick Sizesg
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cubed brickscubed bricks 
consistent rendering times across different views
lower rendering times without sub-brickslower rendering times without sub bricks

choosing size
dimension power of 2 for voxel index computationdimension power of 2 for voxel index computation
323 best

Voxel Mem (KB) Voxel & Gradient Mem Rendering timeVoxel Mem (KB) Voxel & Gradient Mem
(KB)

Rendering time 
(s)

323 64 448 4.9
32 x 32 x 32 64 448 9 332 x 32 x 32 64 448 9.3

643 512 3,584 5.4
64 x 64 x 64 512 3,584 17.0



Results: Single-Core: Data Storage Orderg
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Results: Single-Core: Gradient 
ComputationComputation
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Results: Parallelizations: Number of Cores
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Results: Parallelizations: Number of Nodes
50



Results: Parallelizations: Number of Nodes
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Results: Pre-Operation Moviep
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Results: Post-Operation Moviep
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Conclusion: Accelerations

bricking improves rendering times by 33 7%
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bricking improves rendering times by 33.7%
Morton data storage 2% faster than linear (32 
nodes)nodes)
global gradient cache fastest but high memory 
costcost



Conclusion: Scalabilityy

scalability of bricked raycaster
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scalability of bricked raycaster
great for multi-core: 7.87 for 8 cores
room for improvement for multi-node:room for improvement for multi node: 

3.75 for 4 nodes
6.9 for 8 nodes
20.6 for 32 nodes 

32 nodes can render 10242 images at 10-20 
fps
general algorithm independent of specialized 
h d ( d il d bl )hardware (reduces cost, easily extendable)



Future Work

time-dependent datasets
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time dependent datasets
improve realism by matching to heart-beat

application in an operating environmentapplication in an operating environment
highly distributed system
once internet bandwidth is high enoughonce internet bandwidth is high enough, 
computation located outside of hospital
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