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Abstract

SimTRaX is a simulation infrastructure for simultaneous exploration of highly parallel ac-
celerator architectures and how applications map to them. The infrastructure targets both
cycle-accurate and functional simulation of architectures with thousands of simple cores
that may share expensive computation and memory resources. A modified LLVM backend
used to compile C++ programs for the simulated architecture allows the user to create cus-
tom instructions that access proposed special-purpose hardware and to debug and profile
the applications being executed. The simulator models a full memory hierarchy including
registers, local scratchpad RAM, shared caches, external memory channels, and DRAM
main memory, leveraging the USIMM DRAM simulator to provide accurate dynamic la-
tencies and power usage. SimTRaX provides a powerful and flexible infrastructure for
exploring a class of extremely parallel architectures for parallel applications that are not
easily simulated using existing simulators.
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ABSTRACT

SimTRaX is a simulation infrastructure for simultaneous explo-
ration of highly parallel accelerator architectures and how applica-
tions map to them. The infrastructure targets both cycle-accurate
and functional simulation of architectures with thousands of simple
cores that may share expensive computation and memory resources.
A modified LLVM backend used to compile C++ programs for the
simulated architecture allows the user to create custom instructions
that access proposed special-purpose hardware and to debug and
profile the applications being executed. The simulator models a
full memory hierarchy including registers, local scratchpad RAM,
shared caches, external memory channels, and DRAM main mem-
ory, leveraging the USIMM DRAM simulator to provide accurate
dynamic latencies and power usage. SimTRaX provides a powerful
and flexible infrastructure for exploring a class of extremely parallel
architectures for parallel applications that are not easily simulated
using existing simulators.
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1 INTRODUCTION

When designing application-specific accelerator architectures, cycle-
accurate simulators are indispensable tools for rapid exploration
of the potential design space. Unlike trace-based simulators that
can quickly evaluate particular sub-systems (such as disk, memory,
network interfaces, etc.) under specific work-loads, cycle-accurate
simulators provide the necessary details to capture the precise
inner-workings of an entire system during the entire execution of
the target application to completion. Thus they provide a testbed
for potential modifications to the target application at the software
level that would make it more suitable for the custom accelerator
architecture.

This paper describes SimTRaX: a set of tools that resulted from
exploring the design space of massively parallel accelerator archi-
tectures made up of simple in-order cores combined with shared
compute and memory resources. The SimTRaX toolchain enables
quick and easy experiments by supporting the following key fea-
tures:

Thousands of concurrent hardware threads

Configurable thread resource sharing

Fully cycle-accurate simulation

Functional emulation mode for application debugging
LLVM compiler support for custom hardware features
Integrated source-level debugging and profiling

Accurate DRAM system modeling

Ample performance to run applications to completion rather
than sampling specific kernels

Unlike most other simulators, SimTRaX is designed to simulate a
large number of concurrent hardware threads with cycle-accuracy
without introducing high-level approximations (modern computa-
tion platforms provide ample performance for this approach). We
also provide an easy mechanism to allow software-access to various
custom hardware features via LLVM compiler support [19]. We can
use source-level debugging symbols provided by LLVM to debug
and profile simulated architectures and applications on a wide vari-
ety of metrics (e.g. time spent per line, or energy per function call).
Furthermore, accurate simulation of the dynamic random access
memory (DRAM) behavior with SimTRaX produces reliable results,
especially for applications that process a large amount of data with
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unpredictable access patterns. Thus, SimTRaX has been used to
simulate various hardware/software designs for accelerating fun-
damental graphics applications [17, 18, 29-31], particularly ones
that are ill-suited for existing GPUs.

2 BACKGROUND

Although existing simulators enable experimentation within their
own expected parameters, we have found that exploring a design
space that is massively parallel can benefit from a new simula-
tion infrastructure. Architectures in this class can be thought of as
highly parallel tiled architectures but with every thread processing
unit having its own program counter (PC), and thus able to run
its own code in a multiple-instruction multiple-data (MIMD) mode.
In practice, we find that these architectures, and the applications
that map well to them, are often more correctly categorized as
single-program multiple-data (SPMD) processing. In this case all
hardware processors execute the same program, but because they
have their own PCs, can be at different points in that program
depending on their own data and control flow!. This can leverage
data parallelism and at the same time allow sharing of large and
complex functional units. Some examples of tiled architectures of
this general sort include TRaX [30, 31], Rigel [13, 15, 16], Coperni-
cus [10], STRaTA [17, 18], and SGRT [20]. In addition to tile-based
simulators, there are many simulators for more traditional CPU
and GPU architectures.

2.1 Uni- and Multi-Core

CPU architectures are designed to allow one to tens of threads to
make progress at a high rate and are optimized for the latency of a
given thread of execution rather than the throughput of the entire
system. These architectures use hardware features such as out-of-
order (OOO) processing and prediction to improve performance,
often at the cost of power and transistor area. Such simulators
include SimpleScalar [4], Simics [23], gem5 [2] and Hornet [26].

SimpleScalar supports a single or small number of MIPS-like
cores while others support additional instruction sets, such as x86,
ARM, and SPARC. These simulators are also capable of modeling
sophisticated memory hierarchies. Simics, gem5 and Hornet also
support booting an operating system, simulating peripheral devices,
and allow varying the simulation fidelity from cycle-accurate to
reduced accuracy which enables fast forwarding a running applica-
tion.

2.2 GPU

The rise of data-parallel computing in recent years has created the
need to simulate massively parallel single-instruction multiple-data
(SIMD) or single-instruction multiple-thread (SIMT) architectures
exemplified by graphics processing units (GPUs). GPGPU-Sim [1, 9]
is capable of running unmodified CUDA and OpenCL workloads
on a simulated NVIDIA-like GPU architecture. While the use of un-
modified workloads is tremendously useful, keeping the simulator
up to date with the fast pace of CUDA and OpenCL development,

!Note that single-instruction multiple-thread (SIMT) processing as defined by
NVIDIA [22] is often considered similar to single-program multiple-data (SPMD).
However, SIMT support for divergent thread execution only tracks the divergence and
still must mask off the results from diverged threads within a SIMT group. SPMD in
our model allows threads to make individual progress while diverging.

and the corresponding hardware changes, presents an ongoing
challenge. GPGPU-Sim has been extended with a detailed power
model to explore potential energy-saving techniques [21]. Recently,
GPGPU-Sim and gem5 have been combined [25], which under-
scores the flexibility and interoperability of available simulation
platforms. Multi2Sim [32] is another combined GPU-CPU simulator
which implements an assortment of GPU and CPU architectures
and is intended to study the interaction between CPU and GPU in
a heterogeneous execution environment.

2.3 Tiled

Tiled architectures generally achieve their performance through
increased parallelism (more hardware computation threads) but
with each of the thread processors being quite simple and stripped-
down compared to a traditional core. Such architectures can scale
into thousands of threads.

Some simulators leverage dynamic binary translation to enable
simulating thousands of connected cores. PriME [8] focuses on a
large number of chips executing a heterogeneous multi-threaded
workloads simultaneously, and runs individual cores for an interval
before synchronizing them. Zsim [28] scales well when simulating
large architectures in parallel by first ignoring latencies and con-
tentions, and then relies on event driven simulation to determine
them.

Graphite [24] implements a modular memory system and pro-
vides three different accuracy modes. Although not cycle-accurate,
it attempts to provide accurate timing estimates by using time
stamps for synchronization. Sniper [5] extends Graphite with im-
provements in cache hierarchy and core model fidelity.

Among tile-based simulators, Rigel [13, 15] is probably the most
similar to SimTRaX. Rigel simulates thousands of execution threads,
allows configuration of the interconnect and the memory system,
and includes development tools based on LLVM. Rigel applications
are developed using a simple task-based bulk synchronous parallel
programming model to be executed in a SPMD paradigm. While
Rigel development seems to have stopped in 2012, it demonstrates
that simulation infrastructures that include support for massive
parallelism and compiler integration are interesting in a variety of
domains.

3 SIMULATOR ARCHITECTURE

SimTRaX was designed to help explore application-specific accel-
erator architectures, modeled as a tiled, hierarchical, parallel ar-
chitecture with a few thousand processing units. An example is
shown in Figure 1. The lowest level is composed of simple in-order
Thread Processors (TPs) that have limited execution resources such
as register files, integer execution units, small scratchpad memories,
and program counters. At the middle level, a Thread Multiprocessor
(TM) can be formed by tiling a number of TPs alongside units they
all share access to. The shared resources can include L1 caches
(both instruction and data), complex computation units (such as
floating point division), and special functional units tailored to the
application space. At the highest level, a chip can consist of many
TMs which share access to chip-wide resources, such as L2 data
caches which connect to memory controllers for off-chip DRAM
access. Representing the hardware in this way offers the ability to
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Figure 1: An example of a hierarchically organized parallel
architecture [18] supported by SimTRaX. A number of sim-
ple in-order hardware Thread Processors (TPs) share access
to execution units (FPU, etc.) and multi-banked instruction
and L1 data caches. This structure forms a Thread Multipro-
cessor (TM), each of which share access to an L2 data cache
with the other TMs tiled on chip. Off-chip memory channels
are connected to each of the L2 data caches.

simulate a range of architectures, some of which would not map
easily to other simulation platforms.

Although this hardware abstraction is general in terms of the
types of parallel applications it supports, it works especially well
with applications that can leverage a SPMD programming model.
In this model, a single serial program is executed by each TP which
relies on its own program counter. Parallelism is achieved through
distributing data. Applications rely on an Application Program-
ming Interface (API) to access synchronization hardware (atomics,
barriers) at both the TM and chip-wide levels. These are used for
distributing data and controlling application flow. When appropri-
ate, each shared hardware unit arbitrates atomic access between
all threads that request it.

The software design for SimTRaX mirrors the hardware descrip-
tion, and can be seamlessly compiled into either a cycle-accurate
simulator or a functional simulator customized for the specific ap-
plication. In the cycle-accurate mode, the simulator first initializes
memories, caches, and hardware units based on configuration files
that specify details like capacity, functionality, area, latency, issue
width, and energy consumption. It then lets the application con-
figure and load the main memory to prepare for execution. The
simulation loop iteratively signals clock rise and fall across all
functional units in the architecture. The simulator runs until all
threads finish execution, then reports execution statistics and lets
the application post-process memory to generate its output.

SimTRaX was designed to help explore application-specific accel-
erator architectures. As such, the execution model assumes acceler-
ator memory to be loaded with appropriate data prior to execution
and does not boot an OS. It should be possible to integrate SimTRaX
as a co-processor in a full-system simulator.

Implementing a functional unit requires several components.
First, it must provide initialization, clock rise, and clock fall func-
tionality. Second, each unit must provide a description of the as-
sembly instructions it supports. Custom instructions require API
hooks to expose them to applications. The API hooks get converted
into intrinsics which are later compiled into assembly instructions
as described in Section 5.1. For functional simulation, these special

“instruction” API calls are implemented with simple C++ functions
that mimic the described behavior. The data flow between units
is specified at simulator compile time; the functional unit must
specify what other hardware units it connects to and designate at
what level of the hierarchy it is shared.

A number of high-fidelity DRAM simulators could be used to
provide detailed information about the memory system behav-
ior [27, 33, 34]. For accuracy and ease of integration with a cycle-
accurate simulator like SimTRaX, such a simulator should itself be
cycle accurate and able to respond to individual memory requests
rather than driven by memory traces. SimTRaX relies on a modified
version of the Utah Simulated Memory Module (USIMM) simula-
tor [6]. When thousands of threads attempt to access DRAM during
execution, complex access patterns can emerge, leading to dynamic
latencies far different from a simple average. For the cycle-accurate
simulation, cache line requests that percolate to the DRAM mem-
ory controller are added into its read or write queues. Once all
functional units have completed their clock simulation, SimTRaX
simulates clock cycles for DRAM, maintaining the correct ratio
between DRAM and processor frequencies.

3.1 Thousands of Hardware Threads

SimTRaX is capable of handling thousands of simple in-order hard-
ware threads because they are organized hierarchically. There are
additional benefits because the simulated machine is programmed
using a SPMD model. First, it greatly simplifies programming a
large parallel machine thus expediting benchmark application de-
velopment. Secondly, it encourages the communication between
TPs to remain sparse, thus enabling independent simulation even
though they share access to some hardware units. Graphics and
image processing applications are examples of broad application
categories that can make effective use of the SPMD programming
model.

The simulator is designed to keep overhead low when model-
ing the execution flow for each TP. For example, checking if an
instruction can issue requires a few pointer de-references and com-
parisons mainly from checking if an execution unit has leftover
capacity from its maximum issue width. The memory subsystem
is more expensive, especially during cache misses, because it in-
volves checking whether a particular cache line is in flight. During
each clock, first we simulate all TM-wide units that can enqueue
requests into globally-shared units. Then global units are simulated
followed by DRAM simulation last. The issue unit within each TM
manages the state of each TP and controls the order in which TPs
issue instructions on any given cycle.

Based on application-specific co-processors developed with Sim-
TRaX so far, there was no need for hardware shared memory sub-
systems such as snooping, cache directories, invalidations, etc. As a
result, support for such systems is not currently included. While this
limits SimTRaX’s ability to simulate general purpose processors, it
aids the ability to handle many threads cheaply. Applications which
do require limited data sharing could, rely on special load/store in-
structions which bypass caching, similar to those existent in GPUs.

To accelerate the simulation times, SimTRaX utilizes multiple
software simulation threads, each in charge of several TMs. Such
granularity enables simulated hardware threads to share access to
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Figure 2: Work flow when using SimTRaX in functional
mode. Both application source and architecture description
are compiled into SimTRaX executable tailored for the spe-
cific application. Blue color highlights inputs.

TM-wide resources without any simulator synchronization. How-
ever, whenever a TP accesses a chip-wide unit like the L2 data cache,
SimTRaX serializes accesses using typical software synchroniza-
tion primitives or atomic operations. Thus simulation times depend
in part on the particular architecture design and the frequency
of accesses to globally-shared functional units by the simulated
application. USIMM aggregates all memory requests generated by
TMs, which are simulated by different threads. At the end of each
clock cycle, USIMM simulates each DRAM channel in parallel. All
simulation threads must also synchronize after each simulated cy-
cle. Although relaxing this synchronization requirement increases
simulator speed [24, 26], it introduces errors in predicted hardware
performance.

3.2 Functional Simulation

While the cycle-accurate simulator provides great detail about the
behavior of a new architecture, it is, of course, much slower than the
hardware it simulates. SimTRaX also includes a functional simulator
to accelerate the development of applications that benchmark the
architecture being designed.

The SimTRaX functional simulator takes the form of a stan-
dalone executable that is specifically customized for a given appli-
cation. Essentially, the application source is compiled to a native
executable, using functional implementations of any custom in-
structions through the same API function calls that would generate
the custom assembly. This work flow is shown in Figure 2. Note
that certain custom instructions may not have a meaningful analog
in the functional simulator, like a modification to caching behavior,
but typically they would affect only the cycle-accurate performance
of the simulated architecture.

The functional simulator also takes advantage of several parallel
simulation threads, although each executes a single instance of
the application as if it were a TP. The SPMD programming model
enables seamless execution within both simulators without tailoring
the application code to either functional or cycle-accurate simulator.

4 IMPORTANCE OF ACCURATE DRAM
MODELING

The main memory of a simulated architecture typically consists
of DRAM, which can be a primary consumer of both energy and

time in data-bound applications, so modeling it accurately is cru-
cial. Due to the internal structure and makeup of DRAM circuits,
its operation and performance is far more complex than SRAM
(on-chip caches). In addition to being dynamic, and thus needing
periodic refresh operations, the latency and energy consumption
of individual accesses can vary widely based on the patterns and
addresses of other recent accesses [3, 12].

One important DRAM modeling issue is that the internal struc-
ture of DRAM chips is designed to support cache refill operations:
the minimum amount of data transferred on a typical memory chan-
nel for one access is one cache line of (typically) 64 bytes. Internally
to the DRAM chips, every cache-line-sized access fetches an en-
tire row of data (typically 8KB) from one of the low-level internal
memory arrays. The rows of data accessed in the set of DRAM
chips make up what is called the DRAM row buffer. The process
of reading from the low-level circuit array into the row buffer is
destructive, and the static row buffer must be written back to the
DRAM array in each chip to restore the data.

An important behavior of the row buffer is that because it is
fast static memory, if the next cache refill access is also within that
row buffer, known as a row buffer hit, then access to that data is
dramatically faster and more energy efficient than if the access
requires opening a new row. In a sense, the row buffer acts like a
cache located inside the DRAM chips.

Typical DRAM systems contain many of the physical row buffers,
each capable of storing one open row. DRAM is divided up into
banks, each storing a certain block of memory (a range of addresses).
Each bank represents many rows of data, and can keep one row
open at a time in its physical row buffer.

As a first-order approximation, DRAM performance (both in
terms of latency and power) is determined by the row buffer hit
rate. This is a function of many interacting systems:

o The access patterns generated by the application

o The on-chip data caches filtering those accesses

o The physical configuration of the DRAM system: number of
channels, number of DIMMs per channel, number of banks,
size of a row, etc...

e Address mapping policy: the mapping of addresses to differ-
ent regions (channel, bank, row) of DRAM

o Scheduling policy: the memory controller can enqueue many
requests and issue them out-of-order, in an attempt to in-
crease row buffer hit rates

The interactions of each of these systems must be precisely modeled
to capture the intricacies of DRAM performance.

When simulating memory-bound applications, particularly with
thousands of threads, an accurate memory model is of key impor-
tance and can have drastic impact on the results. SimTRaX reports
detailed memory access statistics to help the user tune and evaluate
their algorithmic/architectural innovations.

5 LLVM INTEGRATION

SimTRaX incorporates the LLVM toolchain [19] to facilitate de-
veloping applications used to benchmark new hardware units and
estimate their benefits. The use of LLVM allows extending the in-
struction set architecture (ISA) with relative ease. Applications are
written in a high-level language, such as C++, and then compiled
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Figure 3: Work flow when using SimTRaX in cycle-accurate
mode. Three components rely on the architecture descrip-
tion during compilation: LLVM backend, application assem-
bly which relies on this backend, and SimTRaX executable.
Blue color highlights inputs.

to the modified ISA to serve as benchmarks for the new architec-
ture design. In addition, we also include debugging and profiling
features within the simulator.

Each custom hardware unit (including the shared memory hier-
archy) may be supported by an API to expose it to the application.
Because the API abstracts away details of the target simulator, pro-
tects the developer from maintaining multiple application copies,
one for each simulation type. When compiling as the standalone
functional simulator, each API call translates into a function call to
the appropriate implementation of the “instruction.” Figure 2 shows
the work flow for the functional operation. Since the LLVM com-
ponent is such an integral part of the simulator, it is important that
the simulated processor cores are based upon assembly language
that is supported by LLVM.

When the application source is compiled for the cycle-accurate
simulator, an assembly file is produced for input to the simulator.
Custom instructions are exposed by API calls which invoke com-
piler intrinsics that generate the appropriate assembly instruction.
Figure 3 shows the work flow for the cycle-accurate operation. We
rely on clang [19] for the frontend to compile an application writ-
ten in a higher-level language like C++ into LLVM intermediate
representation (IR). This IR is then fed into the LLVM backend
implementing the ISA with any additional custom instructions, and
LLVM generates an assembly file along with optional debug sym-
bols. Finally, at execution time, the compiled binary is loaded into
the instruction memory of the simulator and execution begins with
the program counter for each TP set at the first instruction of the
application.

5.1 Extending the ISA

Exploring the usefulness of new functional units often requires
supporting them directly within the instruction set. The LLVM
toolchain allows the ISA to remain fluid through straightforward
extensions while avoiding the need to modify binaries. Although
the architectures simulated using SimTRaX mostly rely on modified
MIPS ISA [11], any other instruction set supported by the LLVM
toolchain can be implemented and integrated into the simulator.

Time Profile FPU Energy Profile

Main 100.00% Main 100.00%
Shade 47.57% Shade 51.10%
BVH: :Intersect 31.16% RandomReflection 15.61%

| Tri::Intersect 13.80% Vec: :Normal 11.48%
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|

|

[
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S

Orthogonal .22%

|
|
|
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|
|
|
|
| | Vec::Cross 0.22%

Figure 4: An example profiler output for the same bench-
mark, showing both the computation time (left) and energy
use of different functions (right).

Adding a new instruction to the ISA is a fairly straightforward
process, once the API and intended functionality are implemented
in the simulator. The designer must define the intrinsic and its
inputs and outputs such that they match the APIL The intrinsic
must emit an assembly instruction that matches what the SimTRaX
assembler expects. Finally, the LLVM backend must be recompiled
to incorporate these changes before use, labeled as Compile Backend
in Figure 3. Incorporating the LLVM toolchain within a design
exploration simulator allows to prototype and test new functional
units quickly and easily.

5.2 Debugging and Profiling

The LLVM toolchain can embed within the assembly of the compiled
application. SimTRaX parses and interprets DWARF [7] debugging
symbols, and includes a built-in debugger and profiler that operate
on the full cycle-accurate state of the simulated machine.

The SimTRaX profiler has perfect run time execution information
and does not rely on time sampling. This allows the user to see,
with single cycle accuracy, the resources spent in various regions
of the program’s source code. The profiler can also annotate source
code with any other information available to the simulator, like
the energy spent by hardware units, the number of cache misses,
the number of arbitration conflicts, etc. Fig. 4 shows an example
of the profiler’s output, customized to show two different metrics:
on the left, a typical time profile, and on the right, a profile of the
energy spent in floating point arithmetic units. This simple example
reveals that vector operations, denoted by Vec: : %, consume most
time, but floating point square root consumes most energy because
the fixed-function hardware unit is extremely power consumptive.

The profiler can expose, at the application source code level, the
exact source of various behaviors on the chip, providing researchers
more insight about where to target their efforts. As a result, Sim-
TRaX can provide a more complete understanding of the impact
aspects of the hardware have on performance when evaluating new
architectures.

6 EVALUATION

We evaluate SimTRaX performance when simulating the TRaX
architecture [30, 31]. Selected graphics benchmarks, shown in Fig-
ure 5, evaluate the effects of accessing memory (excluding TM’s
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Figure 5: Representative output images generated using
Mandelbrot and path tracing benchmark applications.

local store) on simulator performance. The Mandelbrot benchmark
includes a large percentage of computation, where the memory
subsystem is accessed only for initial parameters and image output.
Path tracing, a popular algorithm that generates photo-realistic
images of virtual scenes [14], relies on iterating over tree data struc-
tures per pixel and thus can access memory rather incoherently.
Smaller scenes, like Crytek Sponza (262 thousand triangles), gen-
erate more coherent accesses and thus higher cache hit rates than
larger scenes like San Miguel (10.5 million triangles).

The output image resolution is 1024 X 1024, and path tracing
benchmark uses maximum ray depth of three. Benchmarked TRaX
configuration combines 32-wide TMs into a chip with 128 to 2048
total TPs running at 1GHz. Each TM contains shared execution
units, and a 32KB L1 data cache. The L1 data cache from each TM
is assigned to one of four global 512KB L2 data caches. They in
turn connect to the DRAM memory controller set up as 8 channel
GDDR5 for a maximum of 512GB/s bandwidth. The performance of
the simulated architecture is measured in frames per second (FPS),
which is the inverse of total time taken to generate the image. The
simulator is evaluated on a hexa-core Intel i7-5820K CPU running
at 3.3GHz and 32GB of DDR4 memory.

6.1 Architecture Flexibility

SimTRaX was used by researchers to explore dedicated graphics
co-processor architectures [17, 18, 29-31] targeting path tracing
algorithm. Based on the data flow, this work can be segmented into
three distinct types of architectures.

TRaX, Figure 6a, relies on a more familiar memory layout: TMs
are split between four L2 data caches which share access to DRAM.
The researchers add a few global registers and an atomic incre-
ment instruction, which returns incremented value: ATOMIC_INC
destReg srcGblReg.

STRaTA, Figure 6b, connects all TMs to a single smaller L2 data
cache and a shared on-chip hardware ray queue. STRaTA also
modifies the ISA to allow a master TP in each TM to schedule a
ray queue for the entire TM and to enable each TP to read / write
ray data from the assigned queue. A ray is read into dedicated
TP registers and the success is stored into the destReg register:
READ_RAY destReg.

Dual streaming architecture, Figure 6c, connects all TMs to sev-
eral specialized shared on-chip units designed to work with both
ray and scene data streams. The software and the hardware are

designed concurrently so as to prevent TMs from accessing mem-
ory randomly by prefetching necessary data from DRAM prior to
scheduling execution. The dual streaming architecture also mod-
ifies the ISA to read / write rays into the ray stream (stored in
DRAM), fetch scene stream from on-chip buffer and atomically
update ray hit records. The updater loads necessary data stored in
TP’s local store address given by srcAddrR register value, compares
with and potentially overwrites data stored in main memory at the
address given by destAddrR register value: UPDATE_HR destAddrR
srcAddrR.

The flexibility of SimTRaX and the ease of modifying the ISA
enabled simulating performance of these three different sets of
co-processor architectures. The authors also rely on detailed per-
formance and energy reports generated by SimTRaX to evaluate
their proposed designs.

6.2 DRAM

To compare the effects of simulating DRAM accurately, consider
simulated performance executing Path Tracing on a TRaX archi-
tecture with varying number of TPs, shown in Figure 7. This test
includes four different models for DRAM accesses. USIMM simu-
lates DRAM behavior correctly. The Free Memory model makes
all memory accesses take one cycle, bypassing L2 data caches and
DRAM memory controller altogether. This model is useful for mea-
suring the compute-bound limit to the performance of the simulated
architecture. The 100 cycles test sets DRAM access latency to 100
cycles for each access and limits maximum bandwidth per cycle
without simulating read/write queues per channel. The Correct Avg
Latency test similarly uses a constant latency for DRAM accesses,
which is manually set to match the average access latency gen-
erated by USIMM simulations (60 - 470 cycle read latencies). The
simulated performance plateaus for the San Miguel scene at 512
TPs when simulating DRAM accurately because the configuration
is DRAM bandwidth-limited. However, without accurate DRAM
simulation, this behavior cannot be accurately captured, and the
simulated performance results scale almost linearly with the num-
ber of TPs. It is clear that the accuracy of simulating the DRAM
dynamic behavior can have a profound effect on reported results
of the simulator.

6.3 Simulator Performance

Although cycle-accurate simulators enable highly accurate and de-
tailed evaluation of proposed architectures, they are considered
slow. However, the combination of architectural choices, using
multi-threading and general improvements in processor perfor-
mance help make cycle-accurate simulations feasible.

Figure 8 shows SimTRaX performance measured in millions of
simulated instructions per second (MSIPS) as a function of number
of TPs while using four simulator threads. SimTRaX simulates at a
rate of 0.33 to 7.38 MSIPS depending on how frequently the work-
load and hardware communicate with chip-wide units. This perfor-
mance is good enough to enable co-processors with thousands of
threads and new hardware units, and benchmark applications run-
ning to completion. The performance dips for both Crytek Sponza
and San Miguel scenes around 1024 TPs because those configu-
rations become DRAM bandwidth-limited. This results in higher
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Figure 7: Effect of DRAM accuracy on simulated perfor-
mance of path tracing on TRaX architecture for San Miguel
scene.

DRAM latencies and more simultaneous requests to the DRAM sim-
ulation component, requiring heavy utilization of software locks.

7 CONCLUSION AND FUTURE WORK

We have described SimTRaX, a simulator designed to explore highly
parallel co-processor architectures with thousands of simple threads
sharing access to expensive computation and memory resources.
The simulation infrastructure provides several components impor-
tant for quick exploration of possible architecture designs con-
currently with targeted software modifications: combined cycle-
accurate and functional simulation capability, flexibility in how
functional units are connected, a highly accurate DRAM model,
and integration of the LLVM toolchain for easy ISA extensions and
compiling applications written in a high-level language.

The combination of LLVM debugging information and cycle-
accurate system state can be used to generate a highly detailed
profile with information beyond just execution time. For example,
a user could generate a profile of energy spent in the various chip
components during execution. This focus on massively parallel
architecture, integration with LLVM, and the resulting ability to
profile simulated code in detail on the simulated architecture is not
available on other simulator platforms that we are aware of.

An interesting future direction is extending SimTRaX to support
more sophisticated memory sharing mechanisms, which would
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Figure 8: SimTRaX performance measured in millions of
simulated instructions per second.

enable SimTRaX to simulate more general architectures. It would
also be interesting to explore how we can enable simulations to
rely on task-based parallelism while relaxing how often simulation
threads need to synchronize. To aid in evaluating radically different
architectures faster, SimTRaX’s modularity should extend further
and enable a node-based graphical interface to configure how func-
tional units are connected and shared. Finally, an automatic system
can be used to find optimal architecture configurations by using
gradient-descent-like algorithms to optimize a metric output by the
simulator (like energy or performance).
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