
Noname manuscript No.
(will be inserted by the editor)

A Detailed Study of Ray Tracing Performance: Render Time
and Energy Cost

Elena Vasiou · Konstantin Shkurko · Ian Mallett · Erik Brunvand ·
Cem Yuksel

Published 2018

Abstract Optimizations for ray tracing have typically

focused on decreasing the time taken to render each

frame. However, in modern computer systems it may

actually be more important to minimize the energy

used, or some combination of energy and render time.

Understanding the time and energy costs per ray can

enable the user to make conscious trade offs between

image quality and time/energy budget in a complete

system. To facilitate this, in this paper we present a

detailed study of per-ray time and energy costs for ray

tracing. Specifically, we use path tracing, broken down

into distinct kernels, to carry out an extensive study

of the fine-grained contributions in time and energy

for each ray over multiple bounces. As expected, we

have observed that both the time and energy costs are

highly correlated with data movement. Especially in

large scenes that do not mostly fit in on-chip caches,

accesses to DRAM not only account for the majority of

the energy use but also the corresponding stalls domi-

nate the render time.

Keywords Ray Tracing · Energy Efficiency · Graphics

Processors · Memory Timing

1 Introduction

Ray tracing [40] algorithms have evolved to be the most

popular way of rendering photorealistic images. In par-

ticular, path tracing [19] is widely used in production

University of Utah
50 Central Campus Dr, Sale Lake City, UT, 84112
E-mail: {elvasiou, kshkurko, imallett, elb}@cs.utah.edu,
cem@cemyuksel.com
This is a post-peer-review, pre-copyedit version of an article
published in The Visual Computer Journal

today. Yet despite their widespread use, ray tracing al-

gorithms remain expensive in terms of both computa-

tion time and energy consumption. New trends arising

from the need to minimize production costs in indus-

tries relying heavily on computer generated imagery,

as well as the recent expansion of mobile architectures,

where application energy budgets are limited, increase

the importance of studying the energy demands of ray

tracing in addition to the render time. A large body

of work optimizes the computation cost of ray trac-

ing by minimizing the number of instructions needed

for ray traversal and intersection operations. However,

on modern architectures the time and energy costs are

highly correlated with data movement. High parallelism

and the behavior of deep memory hierarchies, prevalent

in modern architectures, make further optimizations

non-trivial. Although rays contribute independently to
the final image, the performance of the associated data

movement is highly dependent on the overall state of

the memory subsystem. As such, to measure and un-

derstand performance, one cannot merely rely on the

number of instructions to be executed, but must also

consider the data movement throughout the entire ren-

dering process. In this paper, we aim to provide a de-

tailed examination of time and energy costs for path

tracing. We split the ray tracing algorithm into discrete

computational kernels and measure their performance

by tracking their time and energy costs while render-

ing a frame to completion. We investigate what affects

and limits kernel performance for primary, secondary,

and shadow rays.Our investigation explores the varia-

tion of time and energy costs per ray at all bounces in

a path. Time and energy breakdowns are examined for

both individual kernels and the entire rendering pro-

cess. To extract detailed measurements of time and en-

ergy usage for different kernels and ray types, we use



AUTHOR PRE-PRINT

a cycle-accurate hardware simulator designed to simu-

late highly parallel architectures. Specifically, we profile

TRaX [35,36], a custom architecture designed to accel-

erate ray tracing by combining the parallel computa-

tional power of contemporary GPUs with the execu-

tion flexibility of CPUs.Therefore, our study does not

directly explore ray tracing performance on hardware

that is either designed for general-purpose computa-

tion (CPUs) or rasterization (GPUs). Our experiments

show that data movement is the main consumer of time

and energy. As rays are traced deeper into the acceler-

ation structure, more of the scene is accessed and must

be loaded. This leads to extensive use of the memory

subsystem and DRAM, which dramatically increases

the energy consumption of the whole system. Shadow

ray traversal displays a similar behavior as regular ray

traversal, although it is considerably less expensive, be-

cause it implements any-hit traversal optimization (as

opposed to first hit). In all cases, we observe that the

increase in per ray, per bounce energy is incremental af-

ter the first few bounces, suggesting that longer paths

can be explored at a reduced proportional cost. We also

examine the composition of latency per frame, identi-

fying how much of the render time is spent on useful

work versus stalling due to resource conflicts. Again, the

memory system dominates the cost. Although compute

time can often be improved through increases in avail-

able resources, the memory system, even when highly

provisioned, may not be able to service all necessary

requests without stalling.

2 Background

Some previous work focuses on understanding and im-

proving the energy footprint of rendering on GPUs on

both algorithmic and hardware levels. Yet, very little

has been published on directly measuring the energy

consumption and latency patterns of ray tracing and

subsequently studying the implications of ray costs. In

this section, we briefly discuss the related prior work

and the TRaX architecture we use for our experiments.

2.1 Related Work

Ray tracing performance is traditionally measured as a

function of time to render a single frame. With a known

upper bound on theoretical performance [2], general

optimizations have been proposed to various stages of

the algorithm [34] to improve performance and reduce

memory traffic and data transport [5,15]. These ap-

proaches are motivated by known behavior, with band-

width usage identified as the major bottleneck in tradi-

tional ray tracing [28,29], leading to suggested changes

in ray and geometry scheduling. Although they address

energy costs of ray tracing at a high level, none of those

explorations examine how individual rays can affect

performance, energy, and image quality, nor do they

systematically analyze the performance of ray tracing

as a whole. We provide a more quantifiable unit of

measure for the underlying behavior by identifying the

costs of rays as they relate to the entire frame gener-

ation. Aila et. al. [2] evaluate the energy consumption

of ray tracing on a GPU with different forms of traver-

sal. Although the work distribution of ray traversal is

identified as the major inefficiency, the analysis only

goes so far as to suggest which traversal method is the

quickest. Some work reduces energy consumption by

minimizing the amount of data transferred from mem-

ory to compute units [3,11,31]. Others attempt to re-

duce memory accesses by improving ray coherence and

data management[22,26,9]. More detailed studies on

general rendering algorithms pinpoint power efficiency

improvements [18,32], but unfortunately do not focus

on ray tracing. Wang et. al. [39] use a cost model to

minimize power usage, while maintaining visual qual-

ity of the output image by varying rendering options

in real-time frameworks. Similarly, Johnsson et. al. [17]

directly measure the per frame energy of graphics appli-

cations on a smartphone. However, both methods focus

on rasterization. There is a pool of work investigating

architecture exploitation with much prior work address-

ing DRAM and its implications for graphics applica-

tions [8,38] with some particularly focusing on band-

width [12,24,25]. Some proposed architectures also fall

into a category of hardware which aims to reduce overall

ray tracing energy cost by implementing packet-based

approaches to increase cache hits [7,30] or by reorder-

ing work in a buffer [23]. Streaming architectures [14,

37] and hardware that uses treelets to manage scene

traffic [1,21,33] are also effective in reducing energy de-

mands.

2.2 TRaX Architecture

In our experiments, we use a hardware simulator to ex-

tract detailed information about time and energy con-

sumption during rendering. We perform our experiment

by simulating rendering on the TRaX architecture [35,

36]. TRaX is a dedicated ray tracing hardware architec-

ture based on a single program multiple data (SPMD)

programming paradigm, as opposed to single instruc-

tion multiple data (SIMD) approach used by current

GPUs. Unlike other ray tracing specific architectures,

TRaX’s design is more general and programmable. Al-

though it possesses similarities to modern GPU archi-

2



AUTHOR PRE-PRINT

(a) TM architecture with 32
lightweight cores and shared
cache and compute resources

TMs TMs

L2TMs TMs

L2TMs TMs

L2TMs TMs

L2

(b) Potential TRaX chip or-
ganization with multiple TMs
sharing L2 caches

Fig. 1 Overall TRaX Thread Multiprocessor (TM) and
multi-TM chip organization, from [36]. Abbreviations: I$ -
instruction cache, D$ - data cache, and XU - execution unit.

tectures, it is not burdened by the GPU’s data process-

ing assumptions.

Specifically, TRaX consists of Thread Multiproces-

sors (TMs), each of which has a number of Thread Pro-

cessors (TPs), as shown in Fig. 1. Each TP contains

some functional units, a small register file, scratchpad

memory, and a program counter. All TPs within a TM

share access to units which are expensive in terms of

area, like the L1 data cache and floating-point compute

units. Several chip-wide L2 caches are each shared by a

collection of TMs, and are then connected to the main

memory via the memory controller.

3 Experimental Methodology

We run our experiments by simulating path tracing on

the TRaX architecture. TRaX and its simulator are

highly flexible systems, which enable testing modern

architecture configurations. We have also considered

other hardware simulators and decided against using

them for various reasons. GPGPUSim [4] allows sim-

ulating GPUs, but only supports dated architectures

and so would not provide an accurate representation of

path tracing on modern hardware. Moreover, we need a

system that is fast enough to run path tracing to com-

pletion, unlike other architecture simulators which are

designed to feasibly simulate a few million cycles. Ad-

ditionally, the profiling capabilities must separate parts

of the renderer and generate detailed usage statistics for

the memory system and compute, which is not easily

attainable on regular CPUs. Although a comprehen-

sive and configurable simulator for CPU architectures

exists [6], it is far too detailed and thus expensive to

run for the purposes of this study. As with any appli-

cation, hardware dependency makes a difference in the

performance evaluation. Therefore, we also run our ex-

Details Latency (cyc)
TM Configuration
TPs / TM 32
Int Multiply 2 1
FP Add 8 2
FP Multiply 8 2
FP Divide

1 20
FP Inv Sqrt

I. Cache
2× 4KB,

1+
16 banks

L1 Cache
1× 32KB,

1+
8 banks

Chip Configuration
Technology Node 65nm CMOS
Clock Frequency 1GHz
TMs 32, 1024 total threads

L2 Cache
4× 512KB,

3+
16 banks

DRAM
4GB GDDR5,

8 channels

Table 1 Hardware configuration for the TRaX processor.

Crytek Sponza
262K triangles

Dragon Box
870K triangles

Hairball
2.9M triangles

San Miguel
10.5M triangles

Fig. 2 Scenes used for all performance tests, arranged by
their size in number of triangles.

periments on a physical CPU, though the experiments

on the CPU provide limited information, since we can-

not gather statistics as detailed as those available from

a cycle-accurate simulator. Yet, we can still compare the

results of these tests to the simulated results and eval-

uate the generality of our conclusions. We augment the

cycle-accurate simulator for TRaX [16] to profile each

ray tracing kernel using high-fidelity statistics gathered

at the instruction level. Each instruction tracks its ex-

ecution time, stalls, and energy usage within hardware

components, including functional units and the memory

hierarchy. Additionally, the simulator relies on USIMM

for high-fidelity DRAM simulation [10] enabling highly

accurate measurements of main memory performance.

For our study, the TRaX processor comprises 32

TMs with 32 TPs each for a total of 1024 effective

threads, all running at 1GHz. This configuration re-

sembles the performance and area of a modern GPU.

Table 1 shows the energy and latency details for the

hardware components. We use Cacti 6.5 [27] to esti-

mate the areas of on-chip caches and SRAM buffers.

The areas and latencies for compute units are esti-

mated using circuits synthesized with Synopsys Design-

Ware/Design Compiler at a 65nm process. The TMs

share four 512KB L2 caches with 16 banks each. DRAM

is set up to use 8-channel GDDR5 quad-pumped at

3



AUTHOR PRE-PRINT

0

20

40

60

80

100

120

140

160

T
im

e
 (

m
s)

Frame Render Time, Crytek Sponza

0 1 2 3 4 5 6 7 8 9
Maximum Ray Bounces

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Memory Data Stall

Compute Execution

Compute Data Stall

Other

0

100

200

300

400

500

600

700

T
im

e
 (

m
s)

Frame Render Time, San Miguel

0 1 2 3 4 5 6 7 8 9
Maximum Ray Bounces

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Memory Data Stall

Compute Execution

Compute Data Stall

Other

Fig. 3 Distribution of time spent between memory and compute for a single frame of the Crytek Sponza (left) and San Miguel
(right) scenes rendered with different maximum ray bounces.

twice the processor clock (8GHz effective) reaching a

peak bandwidth of 512GB/s. We run our experiments

on four scenes with different geometric complexities

(Fig. 2) to expose the effects of different computational

requirements and stresses to the memory hierarchy. Each

scene is rendered at 1024× 1024 image resolution, with

up to 9 ray bounces. Our investigation aims to focus

on performance related to ray traversal the underly-

ing acceleration structure is a Bounding Volume Hier-

archy with optimized first child traversal [20]. We use

simple Lambertian shaders for all surfaces and a single

point light to light each scene. Individual pixels are ren-

dered in parallel, where each TP independently traces a

separate sample to completion; therefore, different TPs

can trace rays at different bounces. We track detailed,

instruction-level statistics for each distinct ray tracing

kernel (ray generation, traversal, and shading) for each

ray bounce and type (primary, secondary, and shadow).

We derive energy and latency averages per ray using

this data. We run our CPU tests on an Intel Core i7-

5960X processor with 20 MB L3 cache and 8 cores (16

threads) with the same implementation of path trac-

ing used by TRaX. Only the final rendering times are

available for these experiments.

4 Experimental Results

Our experimental results are derived from 50 simula-

tions across four scenes with maximum ray bounces

varying between 0 (no bounce) and 9. Depending on

the complexity, each simulation can require from a few

hours to a few days to complete. In this section we

present some of our experimental results and the con-

clusions we draw based on them. The full set of ex-

perimental results are included in the supplementary

document.

4.1 Render Time

We first consider the time to render a frame at different

maximum ray bounces and track how the render time

is spent. In particular, we track the average time a TP

spends on the following events:

– Compute Execution: the time spent executing in-

structions,

– Compute Data Stall: stalls from waiting for the

results of previous instructions,

– Memory Data Stall: stalls from waiting for data
from the memory hierarchy, including all caches and

DRAM, and

– Other: all other stalls caused by contentions on ex-

ecution units and local store operations.

Fig. 3 shows the distribution of time used to ren-

der the Crytek Sponza and San Miguel scenes. In Cry-

tek Sponza, the majority of the time is spent on com-

putation without much memory data stalling. As the

maximum number of ray bounces increases, the time

for all components grows approximately proportionally,

since the number of rays (and thus computational re-

quirements) increases linearly with each bounce. This

is not surprising, since Crytek Sponza is a relatively

small scene and most of it can fit in the L2 cache,

thereby requiring relatively fewer accesses to DRAM.

Once all scene data is read into the L2 cache, the ma-

jority of memory data stalls are caused by L1 cache

misses. On the other hand, in the San Miguel scene,

compute execution makes up the majority of the render

4



AUTHOR PRE-PRINT

0

5

10

15

20

T
im

e
 (

n
s)

Average Time per Ray, Crytek Sponza

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0
20
40
60
80

100

P
e
rc

e
n
ta

g
e

Generate Trace Shade Trace Shadow

0

20

40

60

80

100

T
im

e
 (

n
s)

Average Time per Ray, San Miguel

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0
20
40
60
80

100

P
e
rc

e
n
ta

g
e

Generate Trace Shade Trace Shadow

Fig. 4 Classification of time per kernel normalized by the number of rays. Crytek Sponza (left) and San Miguel (right) scenes
rendered with maximum of 9 ray bounces. Contributions from the Generate and Shade kernels are not visible, because they
are negligible compared to others.

time only for primary rays. When we have one or more

ray bounces, memory data stalls quickly become the

main consumer of render time, consistently taking up

approximately 65% of the total time. Even though the

instructions needed to handle secondary rays are com-

parable to the ones for the primary rays, the L1 cache

hit rate drops from approximately 80% for primary rays

to 60% for rays with up to two bounces or more. As a

result, more memory requests escalate up the memory

hierarchy to DRAM, putting yet more pressure on the

memory banks. Besides adding latency, cache misses

also incur higher energy costs.

4.2 Time per Kernel

We can consider the average time spent per ray by the

following individual kernels at different ray bounces:

– Generate: ray generation kernel,

– Trace: ray traversal kernel for non-shadow rays, in-

cluding the acceleration structure and triangle in-

tersections,

– Trace Shadow: shadow ray traversal kernel, and

– Shade: shading kernel.

Fig. 4 shows the average computation time per ray for

each bounce of path tracing up to 9 bounces. The time

consumed by the ray generation and shading kernels

is negligible. This is not surprising, since ray genera-

tion does not require accessing the scene data and the

Lambertian shader we use for all surfaces does not use

textures. Even though these two kernels are compute in-

tensive, the tested hardware is not compute limited, and

thus the execution units take a smaller portion of the

total frame rendering time. Traversing regular rays (the

Trace kernel) takes up most of the time and traversing

shadow rays (the Trace Shadow kernel) is about 20%

faster for all bounces.

4.3 Ray Traversal Kernel Time

Within the ray traversal (Trace) kernel, a large portion

of time is spent stalling while waiting for the memory

system–either for data to be fetched or on bank con-

flicts which limit access requests to the memory. Fig. 5

shows the breakdown of time spent for execution and

stalls within the Trace kernel for handling rays at dif-

ferent bounces within the same rendering process up

to 9 bounces. Memory access stalls, which indicate the

time required for data to be fetched into registers, take

a substantial percentage of time even for the first few

bounces. The percentage of memory stalls is higher for
larger scenes, but they amount to a sizable percentage

even for a relatively small scene like Crytek Sponza. In-

terestingly, the percentage of memory stalls beyond the

second bounce remains almost constant. This is because

rays access the scene less coherently, thereby thrashing

the caches. This is a significant observation, since the

simulated memory system is highly provisioned both in

terms of the number of banks and total storage size.

This suggests that further performance improvements

gained will be marginal if only simple increases in re-

sources are made. Thus we foresee the need to require

modifications in how the memory system is structured

and used.

4.4 DRAM Bandwidth

Another interesting observation is the DRAM band-

width behavior. Fig. 6 show the DRAM bandwidth for

all four scenes in our tests using different maximum ray

5



AUTHOR PRE-PRINT

0

2

4

6

8

10

12

T
im

e
 (

n
s)

Average Time per Ray, Trace Kernel, Crytek Sponza

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Memory Data Stall

Compute Execution

Compute Data Stall

Other

0

10

20

30

40

50

60

T
im

e
 (

n
s)

Average Time per Ray, Trace Kernel, San Miguel

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Memory Data Stall

Compute Execution

Compute Data Stall

Other

Fig. 5 Classification of time per ray spent between memory and compute for the Trace kernel. Crytek Sponza (left) and San
Miguel (right) rendered with maximum of 9 ray bounces.

0 1 2 3 4 5 6 7 8 9
Maximum Ray Bounces

0

20

40

60

80

100

120

B
a
n
d
w

id
th

 (
G

B
/s

)

Frame DRAM Bandwidth

Crytek Sponza Dragon Box Hairball San Miguel

Fig. 6 DRAM bandwidth used to render each scene to dif-
ferent maximum ray bounces.

bounces. Notice that the DRAM bandwidth varies sig-

nificantly between different scenes for images rendered

using a few number of maximum bounces.

In our tests our smallest scene, Crytek Sponza, and

largest scene, San Miguel, use a relatively small portion

of the DRAM bandwidth for different reasons. Crytek

Sponza uses less DRAM bandwidth, simply because it

is a small scene. San Miguel, however, uses lower DRAM

bandwidth because of the coherence of the first few

bounces and the fact that it takes longer to render.

The other two scenes, Hairball and Dragon Box, use a

relatively larger portion of the DRAM bandwidth for

renders up to a few bounces.

Beyond a few bounces, however, the DRAM band-

width utilization of these four scenes tend to align with

the scene sizes. Small scenes that render quickly end up

using larger bandwidth and larger scenes that require a

longer time use a smaller portion of the DRAM band-

width by spreading the memory requests over time. Yet,

all scenes appear to converge towards a similar DRAM

bandwidth utilization.

4.5 Energy Use

The energy used to render the entire frame can be sep-

arated into seven distinct sources: compute, register

file, local store, instruction cache, L1 data cache, L2

data cache, and DRAM. Overall, performing a floating

point arithmetic operation is both faster and three or-

ders of magnitude less energy expensive than fetching

an operand from DRAM [13]. Fig. 7 shows the total

energy spent to render a frame of the Crytek Sponza

and San Miguel scenes. In Crytek Sponza, a small scene

which mostly fits within on-chip data caches, memory

accesses still dominate the energy contributions at 80%

overall, including 60% for DRAM alone, at 9 bounces.

Compute, on the other hand, requires only about 1-2%

of the total energy. Interestingly, a larger scene like San

Miguel follows a similar behavior: the entire memory

subsystem requires 95% and DRAM requires 80% of the

total energy per frame at the maximum of 9 bounces.

The monotonic increase in the total frame energy at

higher maximum ray bounces can be attributed to the

increase in the total number of rays in the system.

4.6 Energy Use per Kernel

We can consider energy per ray used by individual ker-

nels at different ray bounces by investigating the aver-

age energy spent to execute the assigned kernels. Fig. 8

shows the average energy use in the Crytek Sponza and

San Miguel scenes. The ray generation kernel has a

very small contribution (at most 2%) because it uses

few instructions, mainly for floating point computa-

tion operations. In our tests, shading also consumes a

small percentage of energy, simply because we use sim-

6



AUTHOR PRE-PRINT

0

2

4

6

8

10

12

14

16

E
n
e
rg

y
 (

J)

Frame Energy Usage, Crytek Sponza

0 1 2 3 4 5 6 7 8 9
Maximum Ray Bounces

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Compute

Reg. File

Local Store

I. Cache

L1

L2

DRAM

0
5

10
15
20
25
30
35
40
45

E
n
e
rg

y
 (

J)

Frame Energy Usage, San Miguel

0 1 2 3 4 5 6 7 8 9
Maximum Ray Bounces

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Compute

Reg. File

Local Store

I. Cache

L1

L2

DRAM

Fig. 7 Classification of energy contributions by source for a single frame of the Crytek Sponza (left) and San Miguel (right)
scenes rendered with different maximum ray bounces.

0.0

0.5

1.0

1.5

2.0

E
n
e
rg

y
 (
µ
J)

Average Energy Usage per Ray, Crytek Sponza

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0
20
40
60
80

100

P
e
rc

e
n
ta

g
e

Generate Trace Shade Trace Shadow

0

1

2

3

4

5

E
n
e
rg

y
 (
µ
J)

Average Energy Usage per Ray, San Miguel

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0
20
40
60
80

100

P
e
rc

e
n
ta

g
e

Generate Trace Shade Trace Shadow

Fig. 8 Energy classification per kernel normalized by the number of rays. Crytek Sponza (left) and San Miguel (right) scenes
rendered with maximum of 9 ray bounces. Contributions from the Generate and Shade kernels are not visible, because they
are negligible compared to others.

ple Lambertian materials without textures. Other ma-

terial models, especially ones that use large textures,

could be substantially expensive from the energy per-

spective because of memory accesses. However, inves-

tigating a broad range of shading methods is beyond

the scope of this work. Focusing on the traversal ker-

nels, Fig. 9 compares costs to trace both shadow and

non-shadow rays for all scenes. Overall, because shadow

rays implement any-hit traversal optimization and con-

sequently load less scene data, their energy cost is 15%

lower than regular rays on average.

4.7 Ray Traversal Kernel Energy

Fig. 9 also shows the total energy cost of the ray traver-

sal kernels at different ray bounces up to the maxi-

mum of 9. Unsurprisingly, the larger scenes and those

with high depth complexity consume more energy as

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0

1

2

3

4

5

6

E
n
e
rg

y
 (
µ
J)

Average Energy Usage per Ray

Crytek Sponza, Trace

Crytek Sponza, Trace Shadow

Dragon Box, Trace

Dragon Box, Trace Shadow

Hairball, Trace

Hairball, Trace Shadow

San Miguel, Trace

San Miguel, Trace Shadow

Fig. 9 Comparison of the energy contributions per ray for
the Trace kernels (non- and shadow rays) for all scenes.

ray bounces increase. The energy required by rays be-

fore the first bounce is considerably lower than the sec-

7



AUTHOR PRE-PRINT

0.0

0.2

0.4

0.6

0.8

1.0

1.2

E
n
e
rg

y
 (
µ
J)

Average Energy Usage per Ray, Trace Kernel, Crytek Sponza

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Compute

Reg. File

Local Store

I. Cache

L1

L2

DRAM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E
n
e
rg

y
 (
µ
J)

Average Energy Usage per Ray, Trace Kernel, San Miguel

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Compute

Reg. File

Local Store

I. Cache

L1

L2

DRAM

Fig. 10 Classification of energy contributions per ray by source for the Trace kernel. The Crytek Sponza (left) and San Miguel
(right) scenes rendered with maximum of 9 ray bounces.

ondary rays after the first bounce, since they are less

coherent than primary rays and scatter towards a larger

portion of the scene. This behavior translates into an

increase in both the randomness of memory accesses

and in the amount of data fetched. However, as the

rays bounce further, the cost per ray starts to level

off. This pattern is more obvious for smaller scenes like

Crytek Sponza. Although in the first few ray bounces

the path tracer thrashes the caches and the cache hit

rates drop, the hit rates become roughly constant for

additional bounces. Thus, the number of requests that

reach DRAM remains steady, resulting in the energy

used by the memory system to be fairly consistent for

ray bounces beyond three. The sources of energy us-

age per ray for the traversal kernels (Fig. 10) paint a

picture similar to the one from the overall energy per

frame. The memory system is responsible for 60-95% of

the total energy, with DRAM alone taking up to 80%

for higher bounces in the San Miguel scene.

4.8 Image Contributions per Ray Bounce

It is also important to understand how much each bounce

is contributing to the final image. This information can

be utilized to determine a desired performance/quality

balance. In particular, we perform tests with maximum

ray bounces of 9 and we consider the overall image in-

tensity contributions of all rays up to a certain number

of bounces (maximum of 9), along with contributions

per millisecond and contributions per Joule. As seen in

Fig. 11, the majority of contribution to the image hap-

pens in the first few bounces. After the fourth or fifth

bounce, the energy and latency costs to trace rays at

that bounce become significant compared to their min-

imal contribution to the final image. This behavior is

expected from the current analysis with scene complex-

ity playing a minor role to the overall trend.

4.9 Comparisons to CPU Experiments

The findings so far are specific to the TRaX architec-

ture. To evaluate the generality of our findings, we also

compare our results to the same path tracing appli-

cation running on a CPU. For the four test scenes, we
observe similar relative behavior shown in Fig. 12. Even

though direct comparisons cannot be made, the behav-

ior is similar enough to suggest that performance would

be similar between the two architectures; therefore, the

results of this study could be applied on implementa-

tions running on currently available CPUs.

5 Discussion

We observe that even for smaller scenes, that can es-

sentially fit into cache, memory still is the highest con-

tributor in energy and latency, suggesting that even

in a case of balanced compute workload, compute re-

mains inexpensive. Since data movement is the highest

contributor to energy use, often scene compression is

the suggested solution. However, compression schemes

mostly reduce, but do not eliminate, the memory bot-

tlenecks arising from data requests associated with ray

tracing. Our data suggests that render time and energy

8



AUTHOR PRE-PRINT

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Overall

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Per ms

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0

20

40

60

80

100

P
e
rc

e
n
ta

g
e

Per Joule

Crytek Sponza Dragon Box Hairball San Miguel

Cumulative Contributions to Final Image

Fig. 11 Cumulative distribution of the percentage contri-
bution to the final image using different metrics. All scenes
rendered with maximum of 9 ray bounces.

cost improvements cannot be made by simply increas-

ing the available memory resources, which are already

constrained by the on-chip area availability.

This brings up an interesting opportunity to find

ways to design a new memory system that is optimized

for ray tracing that would facilitate both lower energy

and latency costs. For example, the recent dual stream-

ing approach [33] that reorders the ray tracing compu-

tations and the memory access pattern is likely to have

a somewhat different time and energy behavior. Explor-

ing different ways of reordering the ray tracing execu-

tion would be an interesting avenue for future research,

which can provide new algorithms and hardware archi-

tectures that can possibly separate from the trends we

observe in our experiments.

6 Conclusions and Future Work

We have presented a detailed study of render time and

energy costs of path tracing running on a custom hard-

1 2 3 4 5 6 7 8 9 10
0

20

40

60

C
P
U

, 
5

0
0

 s
p
p
 (

m
in

)

Crytek Sponza

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

C
P
U

, 
5

0
0

 s
p
p
 (

m
in

)

Dragon Box

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

C
P
U

, 
5

0
0

 s
p
p
 (

m
in

)

Hairball

0 1 2 3 4 5 6 7 8 9
Ray Bounce

0

30

60

90

C
P
U

, 
5

0
0

 s
p
p
 (

m
in

)

San Miguel

0

1

2

3

T
R

a
X

, 
1

 s
p
p
 (

m
s)

0

4

8

12

16

T
R

a
X

, 
1

 s
p
p
 (

m
s)

0

3

6

T
R

a
X

, 
1

 s
p
p
 (

m
s)

0

4

8

12

T
R

a
X

, 
1

 s
p
p
 (

m
s)

Frame Render Times

Fig. 12 Frame render times up to the maximum of 9
bounces. The CPU implementation uses 500 samples per pixel
(spp), while TRaX uses 1.

ware designed for accelerating ray tracing. We have

identified the memory system as the main source of

both time and energy consumption. We have also ex-

amined how statistics gathered per frame translate into

contributions to the final image. Furthermore, we have

included an evaluation of the generality of our results

by comparing render times against the same applica-

tion running on the CPU. Given these observations, we

would like to consider more holistic performance opti-

mizations as a function of render time, energy cost and

the impact of rays on image quality.

An interesting future work direction would be a sen-

sitivity analysis by varying the hardware specifications,

such as the memory subsystem size. Also, a study tar-

geting more expensive shading models and texture con-

tributions could reveal how shading complexity could

impact ray traversal performance. In general, detailed

studies of ray tracing performance can provide much

needed insight that can be used to design a function

9



AUTHOR PRE-PRINT

that optimizes both render time and energy under con-

strained budgets and a required visual fidelity.

Acknowledgements This material is supported in part by
the National Science Foundation under Grant No. 1409129.
Crytek Sponza is from Frank Meinl at Crytek and Marko
Dabrovic, Dragon is from the Stanford Computer Graphics
Laboratory, Hairball is from Samuli Laine, and San Miguel is
from Guillermo Leal Laguno.

References

1. Aila, T., Karras, T.: Architecture considerations for trac-
ing incoherent rays. In: Proc. HPG (2010)

2. Aila, T., Laine, S.: Understanding the efficiency of ray
traversal on GPUs. In: Proc. HPG (2009)

3. Arnau, J.M., Parcerisa, J.M., Xekalakis, P.: Eliminating
redundant fragment shader executions on a mobile GPU
via hardware memoization. In: Proc. ISCA (2014)

4. Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H.,
Aamodt, T.M.: Analyzing CUDA workloads using a de-
tailed GPU simulator. In: ISPASS (2009)

5. Barringer, R., Akenine-Möller, T.: Dynamic ray stream
traversal. ACM TOG (2014) 33(4), 151 (2014)

6. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K.,
Saidi, A., Basu, A., Hestness, J., Hower, D.R., Krishna,
T., Sardashti, S., et al.: The gem5 simulator. ACM
SIGARCH Comp Arch News 39(2), 1–7 (2011)

7. Boulos, S., Edwards, D., Lacewell, J.D., Kniss, J., Kautz,
J., Shirley, P., Wald, I.: Packet-based Whitted and dis-
tribution ray tracing. In: Proc. Graphics Interface (2007)

8. Brunvand, E., Kopta, D., Chatterjee, N.: Why graphics
programmers need to know about DRAM. In: ACM SIG-
GRAPH 2014 Courses (2014)

9. Budge, B., Bernardin, T., Stuart, J.A., Sengupta, S.,
Joy, K.I., Owens, J.D.: Out-of-core Data Management
for Path Tracing on Hybrid Resources. CGF (2009)

10. Chatterjee, N., Balasubramonian, R., Shevgoor, M.,
Pugsley, S., Udipi, A., Shafiee, A., Sudan, K., Awasthi,
M., Chishti, Z.: USIMM: the Utah SImulated Memory
Module. Tech. Rep. UUCS-12-02, U. of Utah (2012)

11. Chatterjee, N., OConnor, M., Lee, D., Johnson, D.R.,
Keckler, S.W., Rhu, M., Dally, W.J.: Architecting an
energy-efficient DRAM system for GPUs. In: HPCA
(2017)

12. Christensen, P.H., Laur, D.M., Fong, J., Wooten, W.L.,
Batali, D.: Ray differentials and multiresolution geometry
caching for distribution ray tracing in complex scenes. In:
Eurographics (2003)

13. Dally, B.: The challenge of future high-performance com-
puting. Celsius Lecture, Uppsala University, Uppsala,
Sweden (2013)

14. Gribble, C., Ramani, K.: Coherent ray tracing via stream
filtering. In: IRT (2008)

15. Hapala, M., Davidovic, T., Wald, I., Havran, V.,
Slusallek, P.: Efficient stack-less BVH traversal for ray
tracing. In: SCCG (2011)

16. HWRT: SimTRaX a cycle-accurate ray trac-
ing architectural simulator and compiler.
http://code.google.com/p/simtrax/ (2012). Utah
Hardware Ray Tracing Group

17. Johnsson, B., Akenine-Mller, T.: Measuring per-frame
energy consumption of real-time graphics applications.
JCGT 3, 60–73 (2014)

18. Johnsson, B., Ganestam, P., Doggett, M., Akenine-
Möller, T.: Power efficiency for software algorithms run-
ning on graphics processors. In: HPG (2012)

19. Kajiya, J.T.: The rendering equation. In: Proceedings of
SIGGRAPH (1986)

20. Karras, T., Aila, T.: Fast parallel construction of high-
quality bounding volume hierarchies. Proc. HPG (2013)

21. Kopta, D., Shkurko, K., Spjut, J., Brunvand, E., Davis,
A.: An energy and bandwidth efficient ray tracing archi-
tecture. In: Proc. HPG (2013)

22. Kopta, D., Shkurko, K., Spjut, J., Brunvand, E., Davis,
A.: Memory considerations for low energy ray tracing.
CGF 34(1), 47–59 (2015)

23. Lee, W.J., Shin, Y., Hwang, S.J., Kang, S., Yoo, J.J.,
Ryu, S.: Reorder buffer: an energy-efficient multithread-
ing architecture for hardware MIMD ray traversal. In:
Proc. HPG (2015)

24. Liktor, G., Vaidyanathan, K.: Bandwidth-efficient BVH
layout for incremental hardware traversal. In: Proc. HPG
(2016)

25. Mansson, E., Munkberg, J., Akenine-Moller, T.: Deep co-
herent ray tracing. In: IRT (2007)

26. Moon, B., Byun, Y., Kim, T.J., Claudio, P., Kim, H.S.,
Ban, Y.J., Nam, S.W., Yoon, S.E.: Cache-oblivious ray
reordering. ACM Trans. Graph. 29(3) (2010)

27. Muralimanohar, N., Balasubramonian, R., Jouppi, N.:
Optimizing NUCA organizations and wiring alternatives
for large caches with CACTI 6.0. In: MICRO (2007)

28. Navrátil, P., Fussell, D., Lin, C., Mark, W.: Dynamic
ray scheduling to improve ray coherence and bandwidth
utilization. In: IRT (2007)

29. Navrátil, P.A., Mark, W.R.: An analysis of ray tracing
bandwidth consumption. Computer Science Department,
University of Texas at Austin (2006)

30. Overbeck, R., Ramamoorthi, R., Mark, W.R.: Large ray
packets for real-time Whitted ray tracing. In: IRT (2008)

31. Pool, J.: Energy-precision tradeoffs in the graphics
pipeline. Ph.D. thesis (2012)

32. Pool, J., Lastra, A., Singh, M.: An energy model for
graphics processing units. In: ICCD (2010)

33. Shkurko, K., Grant, T., Kopta, D., Mallett, I., Yuksel, C.,
Brunvand, E.: Dual streaming for hardware-accelerated
ray tracing. In: Proc. HPG (2017)

34. Smits, B.: Efficiency issues for ray tracing. In: SIG-
GRAPH Courses, SIGGRAPH ’05 (2005)

35. Spjut, J., Kensler, A., Kopta, D., Brunvand, E.: TRaX: A
multicore hardware architecture for real-time ray tracing.
IEEE Trans. on CAD 28(12) (2009)

36. Spjut, J., Kopta, D., Boulos, S., Kellis, S., Brunvand, E.:
TRaX: A multi-threaded architecture for real-time ray
tracing. In: SASP (2008)

37. Tsakok, J.A.: Faster incoherent rays: Multi-BVH ray
stream tracing. In: Proc. HPG (2009)

38. Vogelsang, T.: Understanding the energy consumption of
dynamic random access memories. In: MICRO ’43 (2010)

39. Wang, R., Yu, B., Marco, J., Hu, T., Gutierrez, D., Bao,
H.: Real-time rendering on a power budget. ACM TOG
35(4) (2016)

40. Whitted, T.: An improved illumination model for shaded
display. Com. of the ACM 23(6) (1980)

10


