
AUTHOR PREPRINT, AUGUST 2020 1

Mach-RT: A Many Chip Architecture for High
Performance Ray Tracing

Elena Vasiou, Konstantin Shkurko, Erik Brunvand, Senior Member, IEEE , and Cem Yuksel

Abstract—Data movement, particularly access to the main memory, has been the bottleneck of most computing problems. Ray tracing
is no exception. We propose an unconventional solution that combines a ray ordering scheme that minimizes access to the scene data
with a large on-chip buffer acting as near-compute storage that is spread over multiple chips. We demonstrate the effectiveness of our
approach by introducing Mach-RT (Many chip - Ray Tracing), a new hardware architecture for accelerating ray tracing. Extending the
concept of dual streaming, we optimize the main memory accesses to a level that allows the same memory system to service multiple
processor chips at the same time. While a multiple chip solution might seem to imply increased energy consumption as well, because
of the reduced memory traffic we are able to demonstrate, performance increases while maintaining reasonable energy usage
compared to academic and commercial architectures. This paper extends our previous work [1] with design space exploration of the L3
cache size, more detailed evaluation of energy and memory performance, a discussion of energy delay product, and a brief exploration
of boards with 16 chips. We also introduce new treelet enqueueing logic for the predictive scheduler.

Index Terms—Raytracing hardware, Graphics Accelerators

F

1 INTRODUCTION

The tremendous rendering performance of commercial
GPUs is due to two important properties of the rasterization
algorithm. The first one is its high level of parallelism,
which provides a great fit for GPUs with many parallel
cores. The second one is the perfectly predictable manner
in which rasterization accesses the scene data. The second
property is as important as the first one, if not more so,
since it allows GPUs to completely hide memory latency.
Indeed, memory operations are the bottleneck of most com-
puting problems today and rasterization circumvents this
performance penalty by streaming data from memory in a
sequential order. The caching and prefetching mechanisms
of GPUs are structured to exploit this behavior, allowing
the performance of rasterization to scale well with the
increasing number of computation cores.

Ray tracing, on the other hand, does not provide such
a predictable streaming access to the scene data. Instead,
the spatial partitioning structures used for accelerating ray
tracing lead to effectively random, non-sequential accesses
to the scene data that prevent prefetching. Not only does
this increase data access latency but it also makes it highly
challenging to hide this latency. Therefore, most recent work
on accelerating ray tracing concentrates on improving its
memory behavior, such as coalescing memory accesses [2],
[3], [4] or compressing scene data [5], [6], [7]. The ray tracing
performance of NVIDIA’s recent Turing architecture [8] is a
testament to how far such optimizations can go, combined
with dedicated computation units.

Nonetheless, closing the performance gap between ras-
terization and ray tracing requires fundamentally restruc-

• E. Vasiou, K. Shkurko, E. Brunvand and C. Yuksel are with the School
of Computing, University of Utah, Salt Lake City, UT, 84112. E-mail:
{elvasiou, kshkurko, elb}@cs.utah.edu, cem@cemyuksel.com

Manuscript received April 19, 2005; revised August 26, 2015.

turing ray tracing such that it can produce the predictable
streaming access to scene data that rasterization enjoys.
Dual Streaming [9] is one such method that restructures the
memory access pattern of ray tracing into two perfectly pre-
dictable streams: a scene stream and a ray stream. While the
scene stream reduces the scene data transferred from main
memory to its absolute minimum, the additional ray stream
dominates the memory traffic and hinders the performance
of this approach.

In this paper, we propose an unconventional solution to
the memory access problem. We begin with the ray ordering
scheme of the dual streaming approach that minimizes the
memory traffic for the scene data. We then eliminate its ray
stream by storing ray data in on-chip buffers. This brings
the main memory traffic to its absolute minimum, but it
also limits the number of rays that can be in flight simulta-
neously to the size of these on-chip buffers. Unfortunately,
such buffers on a single chip cannot be large enough to store
all rays needed for achieving high rendering performance.
Indeed, a large buffer would lead to overheads not only in
area and manufacturing costs, but also in performance, as
each access to the allocated memory would be progressively
more costly in latency and energy the larger the memory
block is. Our solution is spreading this cost over multiple
chips, all of which are connected to the same main memory
system. This leads to much smaller chips that can be man-
ufactured cost-effectively, and buffers on these chips that
can operate with reduced latency and energy consumption.
Adding an off-chip L3 cache shared among all chips to
reduce the workload on the main memory, a single memory
system can effectively service multiple chips.

We introduce Mach-RT (Many chip - Ray Tracing), a
new hardware architecture for accelerating ray tracing, as
a proof of concept to evaluate our approach. An impor-
tant advantage of Mach-RT is that it uses general-purpose
compute cores that can execute different instructions, unlike



AUTHOR PREPRINT, AUGUST 2020 2

I$ L1
RSB

RSB

TP TP TP TP

Execution
Units

Ray-Triangle
Intersectors

Ray-Box
Intersectors

(a)Thread Multiprocessor (TM) (b)Streaming Processor Chip (SPC)

SceneData RayData Frame Info

Scene
Buf er

Frame
Buf er

L2

TM TM TM TM

Stream
Scheduler

(c)Multi-Chip Board

Generic ConnectionOther Data

WideVector Buf er

. . .. . .

Fig. 1. Overview of Mach-RT – our multiple chip architecture for high-performance ray tracing. We propose a solution that integrates many chips
on a board sharing main (scene) memory, while keeping all rays stored in on-chip memory distributed across those chips. Each chip contains a
number of Thread Multiprocessors which in turn are comprised of many small Thread Processors operating in parallel.

existing GPUs that rely on the SIMD (single instruction
multiple data) paradigm. Moreover, our system is entirely
programmable and the test renderer is written entirely in
standard C++ with custom instructions for ray-triangle and
ray-box intersections.

One inspiration for this approach are the so-called pro-
cessor in memory (PIM) or near-data processing (NDP)
architectures that focus on large memories while moving
processing closer to that memory [10], [11]. By focusing on
moving the processing closer to the required memory, data
movement can be minimized and the entire system can be
made more efficient.

One might falsely expect a multi-chip architecture to
consume significantly more energy than a single processor
chip. On the contrary, we observe in our results that this
assumption is incorrect and indeed a multi-chip architecture
can improve performance while reducing the total energy
consumption. This is because the main consumer of energy
in modern architectures has been the memory system and
optimizations to the memory access patterns can have a pro-
found impact on energy use, as well as performance. This is
an important contribution as in fact, energy consumption
is a growing concern for real-time rendering, especially
considering recent commercial efforts in cloud computing
for online gaming.

We demonstrate the capabilities of the new Mach-RT
architecture by comparing against other leading ray tracing
hardware architectures like STRaTA [12] and Dual Stream-
ing [9]. We show that our proposed configuration scales
better with the increasing number of threads. In addition,
we provide comparisons to a single unrealistically-large
chip that contains the same amount of local storage and
computational resources as all of our processor chips put
together, to demonstrate the ability of our multi-chip solu-
tion to share off-chip memory resources.

We also provide comparisons to highly-optimized ray
tracing software/hardware products from the industry, in-
cluding Intel’s Embree [13] and Microsoft’s DXR [14] run-
ning on NVIDIA’s recent Turing architecture with hardware
support for ray tracing [8], showing that our system can

provide substantially improved performance.
This paper extends our prior work [1] by providing a

design space exploration of the L3 cache size with expanded
evaluation of energy consumption and memory behavior, a
discussion on energy delay product, and an exploration of
the scaling of our system with boards of 16 chips.

Furthermore, we introduce a new scheme for the pre-
dictive scheduling and prefetching of treelets that operates
in a depth-first manner. Our results show that depth-first
treelet traversal does not always provide a performance
improvement as compared to scheduling the treelets in a
breadth-first order [1], [9].

2 BACKGROUND

It is not a new observation that accessing memory is a pri-
mary concern when accelerating ray tracing. One approach
has been to propose specialized fixed-function traversal
units integrated into processors [15], [16], [17], [18], [19],
[20], [21], [22]. While effective at accelerating the issuing of
memory requests, the fixed-function units typically restrict
the acceleration structures to one exact type. However, fixed
function units do not necessarily optimize data requests
from the memory system hierarchy.

Some researchers have focused on reordering how ray
and scene data is accessed by utilizing a form of stream-
ing [23], [24], [25], [26], or applying the SIMD processing
paradigm to the algorithm [24], [27], [28]. Collecting ray and
scene data requests through software means is also a widely
studied solution [2], [3], [4], [29], [30], [31], [32]. None of
those methods, however, focus on increasing the utilization
of larger computation thread counts.

Other work has focused on using the acceleration struc-
ture to control rays by utilizing batching and packets during
scheduling [26], [33], [34], [35], ordered ray generation [13],
[36] or sorting [37], [38], [39], [40]. While these methods
decrease the resource requirements to process rays, they
do not completely eliminate ray traffic to and from main
memory DRAM. One can reduce the memory traffic by
exploiting the BVH structure [41], [42] or by modifying it



AUTHOR PREPRINT, AUGUST 2020 3

to get better performance [43], [44], [45], [46]. Even in cases
where the proposed architecture is designed to keep rays on
chip [12], [47], it is still limited in the number of rays it can
process simultaneously.

A large pool of work is focused on compressing the
acceleration structure [?], [5], [6], [7], [48], [49], [50]. These
methods are effective at reducing the amount of data that
needs to be communicated between the processors and
memory thus improving performance. Even the most ag-
gressive compression schemes cannot realistically enable
storing all rays on chip because rendering a single frame
can require tens of millions of rays. However, the idea of
compression is fundamentally orthogonal to the solution
we are presenting in this paper and it could be used in
conjunction with our Mach-RT multi-chip architecture to
reduce the size of the on-chip memories and allow more
threads to be implemented per chip.

Dual Streaming Algorithm: Our proposed system is
inspired by the Dual Streaming architecture’s approach to
restructuring and minimizing the scene data stream [9].

In that approach the scene stream consists of BVH
treelets [42], each containing both nodes and geometry (e.g.
triangles). Each treelet fits into several DRAM row buffers
for efficient streaming from main memory, and can be
processed separately in parallel.

Dual Streaming processes rays as wavefronts, each of
which contains all rays in flight at the same depth, making
up the ray stream. The ray stream is split into ray queues,
one per treelet, and stores only basic ray data (i.e. origin
and direction), but not the traversal stack per ray. During
traversal, the ray queue associated with a given treelet is
drained fully before a new treelet is acquired.

Rays visit treelets in a fixed traversal order, strictly from
a parent node into its children without returning up. This
ensures that treelets are loaded from the main memory at
most once per ray wavefront. Both scene treelet data and
its corresponding ray queue are prefetched onto the chip
ahead of traversal. Once a treelet’s ray queue is drained, the
child treelets are marked available for processing.If a treelet
has no rays for processing, then the entire scene subtree is
skipped. Treelets with non-empty ray queues can be pro-
cessed in parallel by distributing their corresponding rays
between threads. Traversal continues until all ray queues
are empty.

Rays rely on a local stack when traversing an individual
treelet. When a ray encounters an exit from the current
treelet into one of its children, the ray is duplicated into
the child queue and continues traversing the current treelet
until all exit points are found. Ray duplication prevents rays
from revisiting and reloading parent treelets on their way to
sibling treelets.

Dual Streaming relies on a single shared hit record for
each set of ray duplicates, which requires atomic updates
whenever any ray in the set finds a hit. One disadvantage
of this approach is that using the hit record for early ray
termination becomes non-trivial because a duplicate could
be traversing a different treelet with a closer hit.

3 MACH-RT: A MULTI-CHIP ARCHITECTURE

At a first glance, the system proposed in this paper seems
counter-intuitive. With the increasing size and power of

GPU chips, why propose a multiple chip solution? The
answer is, again, related to memory. It is well known in
the computer architecture community that memory traffic,
especially DRAM traffic, is the largest contributor to latency
and energy increases in computing systems [47], [51], [52],
[53], [54], [55]. That is specifically the case for ray tracing as
well [56].

Dual Streaming minimizes DRAM traffic for scene data
at the cost of adding ray data traffic, which is significantly
larger. Therefore, if one can eliminate the ray data traffic,
DRAM could handle the predictable scene data requests
efficiently. Furthermore, this would minimize the DRAM
traffic so much that it is conceivable to connect multiple
processor chips to the same DRAM.

One way to achieve this is by storing ray data in on-chip
buffers. While it is not reasonable to expect that a single
processor chip would have enough storage for all ray data,
multiple chips can collectively store all rays.

In the near term future,a chip could easily fit a few
million 32 byte sized rays. Storing the frame buffer on
chip, which uses less memory than the ray data, also helps
alleviate pressure on DRAM. Thus during ray traversal,
DRAM needs to service only scene data read requests.

While using a collection of chips is unconventional
considering today’s GPU designs, such architectures were
explored and built in the distant past. A good example
is the Pixel Planes architecture from the 1980’s [57], [58],
[59], which essentially allocated one (bit-serial) processor
per pixel in a custom VLSI “enhanced memory” chip. The
Pixel Planes 4 prototype was envisioned to be scalable to
a 512 × 512 pixel display with 128 pixels on each of the
2048 enhanced-memory Pxpl4 chips. While not envisioning
a system with 2048 chips, we are inspired by the spirit of
the Pixel Planes to imagine accelerating ray tracing through
a modern implementation of multiple chips with enhanced
memory.

One might think that connecting multiple chips to a
single DRAM might be disastrous for performance. We find
the contrary because our proposed architecture generates
minimal scene traffic and absolutely no ray traffic to DRAM.
On a fabrication level, it is easy to imagine that building a
board that contains multiple Mach-RT chips is no different
from a traditional circuit board. Yet, one could also imagine
that multiple chips can be assembled on a silicon interposer
with the off-chip and main memory also integrated in a
tightly coupled system [60], [61]. Bare die assembled on an
interposer substrate would result in a denser, higher speed
system with a smaller footprint and higher bandwidth links
between the various components. It is worth noting that
while NVIDIA integrates DRAM chips directly on their
boards, AMD already uses silicon interposers to assemble
processor systems [62].

Although we focus on solving the memory bottlenecks
associated with ray tracing with our architecture, the system
we have designed, unlike the above approaches, resembles
more a contemporary GPU such as [63], that is fully pro-
grammable with only a handful of specialized units such
as the ray-box/triangle intersection pipelines and stream
scheduler. All chips utilize the Single Program Multiple
Data (SPMD) programming paradigm and since each chip
is independent they can be programmed to carry out differ-



AUTHOR PREPRINT, AUGUST 2020 4

ing tasks. Additionally, Mach-RT does not assume a fixed
function rendering pipeline. The rendering programs are
written in C++, making it accessible even to those without
knowledge of intricate specialized languages and assembly.

3.1 Chip Architecture
Our architecture is designed with multiple chips on a board,
all connected to main memory through an off-chip L3 cache.
Each chip is assigned a portion of the final image to be
computed in parallel.

We assume a homogeneous model for all chips across
the board, as shown in Figure 1. Each Streaming Processor
Chip (SPC) consists of a large number of Thread Multipro-
cessors (TMs), each of which contains a number of Thread
Processors (TPs). TPs are grouped in such a way to allow for
shared utilization of energy and area expensive units. Chips
contain an L2 data cache, used primarily for shading data.
The scene buffer and the stream scheduler are implemented
similarly to the Dual Streaming architecture.

Each SPC contains an on-chip wide vector storage buffer
that stores unique ray data for the entire wavefront. The
ray stream consists of indexes into the wide vector storage
buffer to reduce the storage requirements of ray duplicates.
Thus we reduce the on-chip area cost of the ray stream.

The on-chip frame buffer stores the hit records and other
data necessary to generate new rays in each wavefront.
Unlike Dual Streaming that must utilize a Global Hit Record
Updater to atomically update hit records stored in DRAM,
our frame buffer processes hit records locally. Since chips
are assigned a non-overlapping set of pixels from the entire
image hit records shared by ray duplicates remain on chip
and thus always available for updates and queries. This
enables checking the current closest hit for each ray before
traversing it through a treelet. The frame buffer also stores
the colors for pixels assigned to the SPC.

Even though scene traffic is minimized per chip, because
multiple chips need to access the scene data, read requests
can stress the memory interface. To ease the pressure on
DRAM, we implement an off-chip L3 cache that facilitates
communication between all the chips on the board and the
main memory. The scene data transfer uses a small portion
of the total available bandwidth, so a simple SRAM cache
is sufficient to manage traffic to all chips without incurring
additional latency from a more complex memory model. A
single off-chip L3 cache also allows to interface with DRAM
via a single memory controller, simplifying the memory
hierarchy.

3.2 Mach-RT Configuration
Given the general architecture description, we can explore
the design space of possible Mach-RT configurations to
select the one that performs optimally.

We use Cacti 7.0 [64], [65] for the area and energy
estimates of all our SRAM buffers and on-chip caches.
Computation units are estimated using Synopsys Design-
Ware/Design Compiler at the 65 nm process technology.
Table 1 shows the configuration and the area estimates for
our multi-chip system and each chip within. The memory
sizes and area estimates assume that there are 8 chips on a
board.

TABLE 1
The default configuration of our Mach-RT architecture.

Board TM Configuration
Clock Rate 2.0 GHz TMs / chip 32
DRAM Memory 4 GB GDDR5 TPs / TM 16
L3 Cache 64 MB L1 Cache 32 KB, 8 banks
Total Threads 512 / chip Ray Staging Buffer 2×2KB
Chips 1 - 8
On-Chip Memory (per Chip) Area per Chip
L2 Cache 512 KB, 32 banks Scheduler negligible
Scene Buffer 4 MB Caches / Buffers 542 mm2

Frame Buffer 6.5 MB Compute 52 mm2

Wide Vector Buffer 6.75 MB Total 594 mm2

For comparisons, single large chip incarnations of each
architecture are configured such that their compute and
memory capacities match the values of our proposed archi-
tecture as noted in Table 1. For the direct comparison with
architectures published previously, we simulate running at
2.0 GHz. To compare against the newest NVIDIA Turing
GPU, we configure our architecture with the same number
of threads and running at the matching frequency of 1.8
GHz.

Each SPC in our simulations includes 512 Thread Proces-
sors (TPs), split evenly between 32 Thread Multiprocessors
(TMs) (see Figure 1). TPs contain their own floating point
add and integer units, and rely on their own program
counter for control flow. Each TP has 32 registers for a total
of 128B scratchpad memory. We provision for 4 MB of on-
chip memory for the Scene Buffer handling treelets 64 KB
in size. TPs in each TM share 1 ray-box and 2 ray-triangle
intersection pipelines. Other shared large-area units consist
of L1 data cache, instruction cache, Ray Staging Buffer and
large execution units such as floating point division.

Besides the scene buffer, on-chip memory is split be-
tween the L2 cache, the frame buffer and the wide vector
buffer. The direct-mapped L2 cache holds 512 KB and is
used strictly for shading data. While all other units remain
constant in size when more chips are placed on a board, the
wide vector buffer (ray storage) and the frame buffer can be
smaller in size because the workload per chip is naturally
reduced.

We allocate 6.5 MB to the frame buffer to store the ray hit
records and pixel colors. We assume each ray holds the most
basic information 28B in size. Because rays can be dupli-
cated during traversal (Section 2), we store each duplicate as
4B indexes that reference unique ray data. We provision for
two rays per pixel (shadow and non-shadow) per wavefront
with a generous duplication rate of 20. For the given image
resolution, this configuration requires approximately 54 MB
of ray storage distributed across all chips on the Mach-RT
multi-chip board.

The off-chip direct-mapped L3 cache is also modeled
as a basic SRAM using Cacti’s off-chip memory options.
The access latency is estimated by adjusting Cacti output to
account for the wire delay between the L3 cache and the on-
board chips assuming all chips are equidistant from the L3.
We test several L3 sizes, choosing the 64 MB configuration
shown in Table 1 as the primary one. The multi-chip board
has 4 GB of GDDR5 DRAM configured with 16 32-bit
channels for a total of 512 GB/s maximum bandwidth.



AUTHOR PREPRINT, AUGUST 2020 5

Fairy Forest
174K triangles

Crytek Sponza
262K triangles

Dragon Box
870K triangles

Vegetation
1.1M triangles

Dragon Sponza
6.6M triangles

San Miguel
10.5M triangles

Fig. 2. Benchmark scenes used in our performance tests, ordered according to increasing triangle count from left to right.

3.3 Scheduling
Since the dual streaming algorithm maximizes scene reuse
to reduce memory accesses and constrains the tracing to
occur as a wavefront, the traversal order follows a fixed
predetermined path. In the original dual streaming architec-
ture [9] and our prior work [1] the partitioning of the scene
BHV into treelets dictates a rigid hierarchy, where rays move
strictly from a parent treelet to its children. In the hardware
architecture, the scheduler is responsible for maintaining
this top-down traversal order by keeping track of which
treelets are currently being processed (i.e the treelets that
are in the working set) and which are to be processed next
(i.e the eligible children).

When the working set has a vacant slot, the scheduler
searches the eligible children list until it finds a treelet that
has been assigned rays and whose parent has fully drained
its ray queue.

The eligible children list is implemented as a queue and
treelets are placed within when a ray crosses the bound-
ary of the treelet root node. While some treelets might
be skipped completely if no rays enter them, the overall
traversal of treelets follows a breath-first ordering.

On the other hand, most other ray tracing applications
favor depth-first traversal because it allows reaching leaf
nodes earlier than traversing breadth-first. Additionally,
early ray termination can skip parts of the tree traversal, pro-
viding superior performance when combined with depth-
first traversal.

We introduce a new mode of scheduling treelets that
resembles a depth-first traversal in an attempt to benefit
from early ray termination.

The depth-first scheduler replaces the queue for eligible
children with a stack. Under this mode of operation, when
the working set needs to be replenished, the scheduler looks
through the treelets in the list of eligible children and pops
the first treelet whose parent has been evicted from the
working set. Once the newly added treelet is fetched and
begins processing, its children are placed on the top of
the eligible children stack. This process continues until all
treelets with non-empty ray queues are processed.

While this ordering prioritizes nodes deeper into the
tree, it is not a pure depth-first traversal. Replacing the
original queue with a stack implies that for a given treelet
its children begin processing before sibling nodes. However,
the scheduling still needs to ensure that rays do not traverse
up the tree. Therefore, we still have the constraint that a
treelet is placed into the working set only after its parent
has finished processing. This can lead to situations where
a node higher up the tree will be preferred, but it occurs

considerably less often, as compared to the breadth-first
scheduler.

4 EXPERIMENTATION AND RESULTS

Our primary goal in this work is to show that a novel multi-
chip architecture, such as Mach-RT, can enable ray tracing
to exhibit completely streamed memory access behavior,
similar to rasterization. The result is a high-performance ray
tracing engine that can efficiently share memory resources
across multiple chips.To our knowledge this is the first
proposed architecture for ray tracing with these properties,
which are critical as scene sizes and screen resolutions
continue to increase.

To demonstrate this, we evaluate our proposed hardware
architecture on a set of test scenes using a cycle-accurate
simulator [66]. The simulator integrates a detailed mem-
ory simulator [54] that accurately models DRAM, a vital
component of our experiments that ensures proper system
evaluation. Because of the detailed nature of system sim-
ulation and the requirement to simulate image generation
to completion to accurately model all data interrelations,
each simulation can take from a few hours to several days
to finish, while the simulated time is only a fraction of a
second. Given this simulation overhead, we use a relatively
small number of test scenes with varying triangle counts
that represent different types of rendering effort, shown in
Figure 2.

Each scene is rendered using path tracing [67] with the
maximum ray depth of five at the image resolution of 1024×
1024. This workload produces a set of rays which access
scene data incoherently, stressing the memory systems of
the dedicated ray tracing architectures. To keep focus on
traversal and intersection performance, we rely on simple
Lambertian shading. We use a breadth-first scheduler, like
the original dual streaming method [9], unless otherwise
specified.

4.1 L3 Cache Size Optimization

First, we model how multiple chips could reasonably share
access to a large DRAM-based main memory system. Even
though the traversal order we use minimizes the scene
traffic for a single chip, connecting multiple chips (each with
their own memory controller) is not a trivial task that brings
up a variety of issues related to resource contention, band-
width optimization, and data locality. One well-understood
mechanism for dealing with this sort of an issue is to add
a level of caching, with a multi-banked cache feeding the



AUTHOR PREPRINT, AUGUST 2020 6

Fig. 3. Effect of increasing L3 cache size on total energy per frame for
the Mach-RT architecture.

Fig. 4. Energy distribution for the San Miguel scene with varying L3
cache sizes of the Mach-RT architecture with 1-8 chips. The energy
profile for other tested scenes is similar.

processors and a sophisticated memory controller refilling
that cache from DRAM.

We test the effects on performance between no off-chip
cache and a single L3 cache of varied sizes at 8 MB, 16 MB,
32 MB and 64 MB. The effect on frame rendering time is
minimal, with differences of less than 1 ms/frame for the
larger scenes (Dragon Sponza and San Miguel) even at 8
chips. This is not surprising because the scene bandwidth
has been reduced so much that it is no longer the limiting
factor on frame time. However, we expect to see differences
in energy and bandwidth used because the SRAM L3 cache
has different energy behavior than DRAM, and the larger
cache sizes qualitatively increase the size of the DRAM row
buffer.

We observe small increases in energy used per scene
when increasing the size of the L3 cache. Although access-
ing SRAM uses less energy than accessing DRAM, SRAM
energy increases as its size increases. Also, while DRAM
energy does decrease when the L3 cache is used, that
decrease does not completely outweigh the extra energy
used in the L3 cache SRAM (Figure 3). Figure 4 shows the
distribution of energy between architectural components for
the San Miguel scene; the other tested scenes follow a similar
trend.

The biggest positive impact of the L3 cache is the reduc-
tion of the total bandwidth to DRAM - a precious resource.
While the energy used per access increases with larger cache
sizes, at 64 MB we observe fewer total accesses to the L3
cache and the highest hit rates in all scenes for all chip
counts.

Placing an off-chip cache between the main memory and

Fig. 5. Effect of increasing L3 cache size on number of cache lines
transferred from DRAM for the Mach-RT architecture. Larger L3 caches
lead to a reduction.

Fig. 6. Frame render time for Mach-RT and Dual Streaming architec-
tures, both as individual unrealistically-large chips.

the processor chips reduces the number of cache lines trans-
ferred (Figure 5) and DRAM bandwidth. For most tested
scenes, the bandwidth reduction reaches almost 80 GB/s at
8 chips for the large scenes. The reduction in the number
of cache lines transferred ranges from approximately 5
million for Crytek Sponza and Fairy Forest, to an average
of 50 million for San Miguel and Dragon Sponza. These are
consistent with the cache hit rates increasing from 8% at 8
MB to 20% at 64 MB for San Miguel. Thus we select the
64MB configuration for comparison with other methods.

4.2 Single Large Chip

We evaluate a single large chip version of our proposed
architecture and compare it with the Dual Streaming archi-
tecture [9] configured to use a large number of threads on
a single large chip to understand the effects of keeping ray
data on chip. Although both configurations are unrealistic,
because they require much more on-chip memory than is
plausible to allocate on a single chip, this comparison is
useful to understand the best-case behavior. Then we can
evaluate the impact of having multiple, more reasonable,
chips accessing memory simultaneously.

For all tested scenes, our proposed Mach-RT as a large
chip outperforms the large Dual Streaming chip for all
thread counts. Figure 6 shows a subset of the tested scenes.
Note that while the Dual Streaming performance tapers off
for larger thread counts, our Mach-RT architecture keeps
improving. For example, at 4096 threads, the Mach-RT
single large chip renders the frame in half the time: 8 instead
of 16 ms/frame for Dragon Sponza and 16 instead of 35
ms/frame for San Miguel.

Similarly, the energy costs are lower for our Mach-RT
system. Although Dual Streaming reduces scene traffic to its



AUTHOR PREPRINT, AUGUST 2020 7

Fig. 7. Total board energy for Mach-RT and Dual Streaming architec-
tures, both as individual unrealistically-large chips.

minimum, our proposed architecture also completely elimi-
nates the off-chip ray traffic. While Dual Streaming is bound
by DRAM energy, our proposed architecture shows a trade
off between DRAM and on-chip energies for larger thread
counts (Figure 7). Because the chip has more of the required
data available, it can utilize its resources more effectively.
This direct comparison shows the dramatic effect of on-chip
availability of all rays and most of the scene data. However,
such configurations require chips with unrealistically-large
on-chip buffers: over 100 MB, most of which would be
allocated for ray storage.

4.3 Multiple-Chip Ray Tracing
While the single large chip simulation is interesting, it is un-
realistic. The crux of the Mach-RT architecture is that it dis-
tributes the unrealistically-large on-chip memory between
multiple chips without incurring a drop in performance.
This is primarily due to the ability to predictably stream
scene data from main memory while keeping all ray traffic
on-chip.

We compare our multi-chip design to a single
unrealistically-large Dual Streaming chip [9] and STRaTA
chip [12], [47] with hardware resources scaled to a com-
bination of all of our chips. Figure 8 demonstrates how
multiple chips can benefit performance. While the energy
requirements for our proposed system can be slightly higher
for some scenes, such as Vegetation and San Miguel, for
all tested scenes and chip/thread counts, the issue rate of
our cores is higher, averaging at high 60% for Mach-RT and
40% for Dual Streaming and STRaTA. Except for Vegetation,
for which STRaTA is considerably faster because it can
utilize early ray termination, our method renders frames
faster for all tested scenes at all chip/thread counts. Most
interestingly, while our method keeps improving past four
chips (2048 threads), STRaTA begins to slow down at those
thread counts. Notably at 2048 threads for Dragon Sponza
is at 29 ms/frame it slows down to 67 ms/frame for twice
the size of the operating chip (scaled for both threads and
memory) at 4096 threads.

The comparison with STRaTA is especially interesting
since it is an architecture optimized to reduce DRAM energy
while keeping some rays in specialized on-chip memory.

Despite STRaTA being provisioned to hold an increasing
number of rays as the chip scales, it requests a lot of
data from main memory, transferring a larger number of
cache lines (Figure 9). Our Mach-RT multi-chip architecture
transfers at most 180 million cache-lines at 4096 threads (8

Fig. 8. Frame render time and total board energy for Mach-RT with
multiple chips, and Dual Streaming and STRaTA architectures, both as
individual unrealistically-large chips.

Fig. 9. Number of cache lines transferred for Mach-RT with multiple
chips and STRaTA as individual unrealistically-large chip.

chips) for San Miguel, while STRaTA is close to 542 million.
Similarly, because STRaTA requests more data from DRAM,
it consumes more energy than the Mach-RT architecture.
The total energy decreases until 2048 threads (4 chips) and
begins to increase after as seen in Figure 8. While our
proposed architecture behaves similarly but at a smaller
scale, the render times are considerably lower making the
increase in energy an acceptable side effect.

While Mach-RT has no ray traffic to DRAM, each chip
still streams the scene once per ray wavefront. Table 2
extends our analysis for the energy and performance of our
8 chip sytem and also shows despite that artificially inflated
scene traffic, Mach-RT bandwidth and bytes/ray is always
the lowest compared to the other architectures and traces
more rays per second. Additionally, since the L3 cache is
designed to serve overlapping scene requests from multiple
chips the pressure on DRAM is greatly reduced leading to
much lower total energy. Given the presence of the on chip
buffers on chip memory energy is higher overall but not
enough to outweigh the savings from not interfacing with
main memory.



AUTHOR PREPRINT, AUGUST 2020 8

TABLE 2
Overall performance evaluation of the dedicated ray tracing architectures.

Fairy Forest Crytek Sponza Dragon Box Vegetation Dragon Sponza San Miguel
Frame Render Time 3.42 ms 10.27 ms 5.17 ms 11.75 ms 7.98 ms 16.57 ms
Rays Traced per sec 1719 M 886 M 2274 M 471 M 1203 M 550 M
Compute Energy 0.08 J 0.28 J 0.14 J 0.21 J 0.19 J 0.44 J
On-Chip Memory Energy 1.81 J 6.88 J 3.03 J 5.39 J 4.19 J 11.17 J
L3 Cache Energy 0.13 J 0.23 J 0.08 J 0.37 J 1.29 J 3.05 J
DRAM Energy 0.14 J 0.33 J 0.28 J 0.38 J 0.79 J 1.68 J
Total Energy 2.16 J 7.52 J 3.96 J 6.22 J 6.46 J 16.33 J
Avg. Bandwidth 53 GB/s 22 GB/s 133 GB/s 23 GB/s 280 GB/s 330 GB/s
Cache Lines Transferred 6 M 7 M 22 M 8 M 70 M 171 M

Mach-RT, Ours
8 chips

Bytes / Ray 62 51 116 98 466 1201
Frame Render Time 5.47 ms 17.20 ms 9.54 ms 14.72 ms 13.10 ms 35.23 ms
Rays Traced per sec 1074 M 529 M 1231 M 376 M 732 M 259 M
Compute Energy 0.08 J 0.29 J 0.15 J 0.23 J 0.20 J 0.49 J
On-Chip Memory Energy 3.11 J 11.38 J 4.83 J 7.65 J 6.80 J 21.96 J
DRAM Energy 0.57 J 1.76 J 1.12 J 1.05 J 1.49 J 3.71 J
Total Board Energy 3.74 J 13.40 J 6.10 J 8.91 J 8.46 J 26.13 J
Avg. Bandwidth 267 GB/s 265 GB/s 283 GB/s 155 GB/s 300 GB/s 266 GB/s
Cache Lines Transferred 46 M 142 M 845 M 71 M 123 M 293 M

Dual Streaming
single chip

(unrealistically-large)

Bytes / Ray 498 1,001 460 823 819 2,053
Frame Render Time 11.93 ms 29.43 ms 234.68 ms 28.76 ms 140.80 ms 226.70 ms
Rays Traced per sec 1154 M 680 M 101 M 400 M 143 M 81 M
Compute Energy 0.09 J 0.23 J 0.33 J 0.16 J 0.23 J 0.36 J
On-Chip Memory Energy 1.60 J 4.36 J 9.24 J 3.02 J 6.43 J 10.78 J
DRAM Energy 0.47 J 1.69 J 11.61 J 0.47 J 4.53 J 12.62 J
Total Board Energy 2.15 J 6.28 J 21.17 J 2.16 J 11.19 J 23.75 J
Avg. Bandwidth 257 GB/s 325 GB/s 175 GB/s 341 GB/s 91 GB/s 154 GB/s
Cache Lines Transferred 41 M 136 M 640 M 148 M 190 M 542 M

STRaTA
single chip

(unrealistically-large)

Bytes / Ray 445 955 3,484 1,707 1,265 3,806

Each system has 4096 threads running at 2 GHz frequency. The rendering performance is evaluated with frame render time and the millions
(M) of rays traced per second. The component-wise distribution of total energy per frame is also shown. Higher is better for rays traced;
otherwise, lower is better.

Fig. 10. Energy Delay Product for Mach-RT, Dual Streaming and
STRaTA architectures

4.4 Energy Delay Product

The Energy-Delay product (EDP) is widely used as a met-
ric capable of coupling both the energy consumption and
performance of alternative architecture design choices [68].
It is used both in low-power system design where there is
often an interest in trading off delay for increased energy
efficiency, and in high-performance system design where
energy dissipation is a limiting factor. To better measure the
efficiency of our system against the previously developed
ones, we investigate the effects of increasing the number of
chips on the energy-delay product. As seen from Figure 10,
for the two largest scenes of Dragon Sponza and San Miguel
our architecture has consistently lower EDP than both Dual
Streaming and STRaTA, with the latter experiencing a large
spike at 4096 threads. While the Dual Streaming EDP is

continuously improving as ours, at 8 chips of the equivalent
4096 thread chip, our architecture achieves an EDP of 0.0108
and 0.0478 for Dragon Sponza and San Miguel respectively,
compared to 0.332 and 0.223 for the large Dual Streaming.

4.5 Comparisons to Existing Systems

For completeness, we also include comparisons to ex-
isting software/hardware systems optimized for high-
performance ray tracing, including a Microsoft DXR imple-
mentation of path tracing [14] and Intel’s Embree [13] CPU
ray tracer both running on commercially-available hard-
ware. The DXR results use an NVIDIA RTX 2080 GPU with
2688 cores running at 1.8 GHz, and 8192 MB GDDR6 mem-
ory with 448 GB/s peak bandwidth. The Embree (v2.10)
results use the example path tracer (v2.3.2) running on an
Intel Core i7-5960X processor with 20 MB L3 cache and 8
cores (16 threads) running at 3.8 GHz. For a fair comparison
with DXR, we configured our Mach-RT architecture with 6
chips (3072 threads) running at 1.8 GHz.

Table 3 shows the results of our tests. Although Embree
performs slower than the custom ray tracing hardware,
it can run on commodity general-purpose computation
hardware. In our tests, the Mach-RT system with 6 chips
provides faster render times than DXR running on NVIDIA
RTX 2080 for all tested scenes. Notice that the scene data
format we use in our system is not extensively compressed.

This is particularly important because data movement is
the bottleneck of most rendering operations.



AUTHOR PREPRINT, AUGUST 2020 9

TABLE 3
Performance comparison between our Mach-RT architecture and Existing Software/Hardware Systems

Fairy Forest Crytek Sponza Dragon Box Vegetation Dragon Sponza San Miguel
Mach-RT, Ours

(6 chips @ 1.8 GHz)
Frame Render Time 4.82 ms 14.81 ms 7.86 ms 20.64 ms 10.89 ms 23.50 ms
Rays Traced per sec 1,218 M 615 M 1,495 M 284 M 882 M 388 M

DXR
(Nvidia RTX 2080)

Frame Render Time 11.13 ms 16.92 ms 16.89 ms 22.51 ms 24.90 ms 37.98 ms
Rays Traced per sec 546 M 698 M 745 M 289 M 478 M 288 M

Embree
(Intel Core i7-5960X)

Frame Render Time 83.6 ms 150.63 ms 103.81 ms 178.99 ms 118.05 ms 143.64 ms
Rays Traced per sec 96 M 62 M 89 M 42 M 71 M 50 M

Mach-RT simulated with 6 chips (3072 threads). Embree and DXR run on commercially-available hardware. The clock frequency of the
Mach-RT architecture is set to 1.8 GHz, matching the NVIDIA RTX 2080 running DXR. M means millions.

TABLE 4
Render times of our Mach-RT architecture with breadth-first and

depth-first scheduling orders tested using 8 chips

Crytek Dragon San
Sponza Vegetation Sponza Miguel

breadth-first 10.27 ms 11.75 ms 7.98 ms 18.52 ms
depth-first 10.26 ms 11.56 ms 8.29 ms 17.18 ms

4.6 Depth-First Scheduling

All results presented above have been generated using a
breadth-first scheduler. We present a performance compar-
ison of the breadth-first scheduler to our depth-first sched-
uler in Table 4, using our Mach-RT architecture with 8 chips.
Our tests show about 7% speed up for the San Miguel scene
(18.51 ms to 17.18 ms) but about 4% slow down for the
Dragon Sponza scene (7.98 ms to 8.29 ms). In our tests
the render times for the other scenes are almost identical
between the two schedulers.

While one might expect that the depth-first scheduler,
which prioritizes a traversal that gets to the leaf nodes and
finds triangle hits earlier, would have a clear performance
advantage, our tests show that this is not the case for our
Mach-RT architecture. This is mainly because the perfor-
mance advantage of depth-first traversal is directly tied to
early ray termination. With early ray termination, finding
hits earlier allows skipping the traversal of a portion of
the tree that would intersect with a ray. However, this is
effective only if the hit that is found earlier during traversal
is closer to the ray origin. This requires picking the right
traversal order, based on the ray direction. Dual streaming,
however, uses the same treelet traversal order for all rays in
the entire wavefront, which cannot be modified for each ray
based on its direction. As a result, simply using a depth-first
treelet traversal order is not sufficient to effectively skip a
relatively large portion of the ray traversal.

5 DISCUSSION

While the increased on-chip memory needs require us to
keep the thread count per chip relatively low, we are able
to connect enough chips together to use high total thread
counts.

We have shown the performance of up to 8 chips and
have explored systems with 16 chips (8192 threads).

As seen in Table 5, increasing to 16 chips, the frame time
decreases less. At larger chip counts, there are fewer rays
per chip because each is assigned a smaller pixel workload.
With less work per thread on a chip, we observe work

starvation and wasted resource utilization through a drop
in the average issue rate per thread from 70% to 40%. Ad-
ditionally, the impact of fetching a treelet is more significant
per ray because there are fewer rays per chip to amortize
the cost of scene data transfer. For Mach-RT configurations
with more than 16 chips, we observe that prefetching entire
64 KB treelets starts hurting performance. Increasing the
image resolution could provide the necessary work to use
more chips effectively; however, since each simulation can
take a day or more to complete, we kept the resolution at
1024× 1024.

Although we have reduced the impact of ray duplication
by representing each duplicate as an index into ray data
store, the increase in ray counts still leads to significant
drawbacks. Without the extra rays, the on-chip ray storage
could be reduced, thus freeing on-chip area to place more
threads within a chip. The extra rays also introduce addi-
tional computation that could otherwise be avoided.

The extra computation stems not only from traversal of
ray duplicates but also from the ineffectiveness of the im-
plemented early ray termination. Although Mach-RT keeps
hit records on chip and checks each ray for a closer hit
before traversal, the performance benefits of that check are
minimal. It accounts to less than 10 milliseconds per frame,
even for the Vegetation scene whose high depth complexity
would greatly benefit from early ray termination.

The area and energy estimates provided in this paper use
a 65nm manufacturing process, since we currently have no
access to synthesis/simulation models at the cutting-edge
14nm and 7nm nodes that are used commercially. Conser-
vative scaling could give a rough idea of implementing our
proposed hardware in those nodes and make it comparable
to currently commerically available architectures.

6 FUTURE WORK

While the proposed architecture handles scene data traffic
efficiently, compressing both off-chip scene and on-chip ray
data would substantially improve both the rendering speed
and the total energy use. Scene compression would allow
rendering larger scenes while maintaining low bandwidth
requirements even for boards with many chips. It would
also allow packing more information within each treelet.

Reducing the size of the ray storage has not been in-
vestigated extensively. These improvements would directly
translate to reductions in the area demand from the on-chip
memories, allowing each chip to contain more threads and
reducing the size of the board.



AUTHOR PREPRINT, AUGUST 2020 10

TABLE 5
Frame render time of our Mach-RT architecture configured with different chip counts running at 2 GHz.

Fairy Forest Crytek Sponza Dragon Box Vegetation Dragon Sponza San Miguel
4 Chips 6.43 ms 20.18 ms 10.83 ms 23.25 ms 14.36 ms 31.14 ms
8 Chips 3.42 ms 10.27 ms 5.17 ms 11.75 ms 7.98 ms 18.52 ms

Mach-RT, Ours
(@ 2 GHz)

16 Chips 1.88 ms 5.30 ms 3.48 ms 6.02 ms 6.39 ms 12.21 ms

Although the render time decreases for all tested scenes as the number of chips increases, the performance gains are reduced.

As the memory technology improves, it would be bene-
ficial to explore different memory types for the off-chip L3
cache and the main memory. Bandwidth is still an important
concern at higher chip counts, even with the scene streaming
to multiple chips. Utilizing other forms of memory that
trade off lower energy cost per access for higher latency
such as cached DRAM [69] or HBM [70] would further con-
tribute to lowering the total energy cost per frame without
performance penalties. The more experimental HMC [71]
would open possibilities for further optimization in data
management towards a multitude of chips.

This paper focuses on a linear chip layout, where all
chips are connected to the main memory in parallel through
a single L3 cache. Organizing chips hierarchically would be
an interesting future direction. Dedicated cache replacement
policies at each tier could also enable further data reuse,
thus reducing the memory impact further and allowing to
connect more chips together.

7 CONCLUSION

We introduced a new many-chip architecture Mach-RT that
leverages several independent chips co-located on a single
board or interposer. This approach implements the Dual
Streaming ray traversal but completely removes the ray
stream traffic to DRAM and further reduces both DRAM
and total system energy while increasing scalable perfor-
mance up to 4096 threads.

We evaluated our proposed architecture using a cycle-
accurate simulator and assessed its realizability using
architecturally-sound approaches. Our proposed architec-
ture is shown to exceed the performance capabilities of the
Dual Streaming architecture. For the more direct applicabil-
ity of the method, we also compared to the implementations
of the traditional path tracing algorithm using DXR and
Embree libraries running on current hardware, finding that
the Mach-RT can significantly outperform them.

ACKNOWLEDGMENTS

This material is based upon work supported by the National
Science Foundation under grant no. 1409129. Scene data:
Fairy Forest: U. Utah, Crytek Sponza: F. Meinl at Crytek
and M. Dabrovic, Dragon: Stanford CG Lab., Vegetation: S.
Laine, and San Miguel: G. Leal Laguno.

REFERENCES

[1] E. Vasiou, K. Shkurko, E. Brunvand, and C. Yuksel, “Mach-rt: A
many chip architecture for high-performance ray tracing,” in High-
Performance Graphics (HPG 2019). New York, NY, USA: ACM,
2019.

[2] J. Spjut, A. Kensler, D. Kopta, and E. Brunvand, “TRaX: A multi-
core hardware architecture for real-time ray tracing,” IEEE Trans.
on CAD, vol. 28, no. 12, pp. 1802 – 1815, 2009.

[3] D. Kopta, J. Spjut, E. Brunvand, and A. Davis, “Efficient MIMD
architectures for high-performance ray tracing,” in IEEE ICCD ’10,
Oct. 2010.

[4] T. Aila and S. Laine, “Understanding the efficiency of ray traversal
on GPUs,” in HPG ’09, 2009, pp. 145–149.

[5] G. Liktor and K. Vaidyanathan, “Bandwidth-efficient BHV layout
for incremental hardware traversal,” in HPG ’16, 2016.

[6] H. Ylitie, T. Karras, and S. Laine, “Efficient incoherent ray traversal
on GPUs through compressed wide BHVs,” in HPG ’17, 2017.

[7] C. Benthin, I. Wald, S. Woop, and A. T. Áfra, “Compressed-leaf
bounding volume hierarchies,” in HPG ’18, 2018.

[8] NVIDIA, “Turing GPU arch.” 2018, wP-09183-001 v01.
[9] K. Shkurko, T. Grant, D. Kopta, I. Mallett, C. Yuksel, and E. Brun-

vand, “Dual streaming for hardware-accelerated ray tracing,” in
HPG ’17. ACM/EG, 2017.

[10] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton,
C. Kozyrakis, R. Thomas, and K. Yelick, “A case for intelligent
RAM,” IEEE Micro, vol. 17, no. 2, Mar. 1997.

[11] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and
M. Horowitz, “Smart memories: a modular reconfigurable archi-
tecture,” in IEEE ISCA ’00, 2000.

[12] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis, “An
energy and bandwidth efficient ray tracing architecture,” in HPG
’13, 2013.

[13] I. Wald, S. Woop, C. Benthin, G. Johnson, and M. Ernst, “Embree -
a kernel framework for efficient CPU ray tracing,” in SIGGRAPH
’14, 2014.

[14] C. Wyman, S. Hargreaves, P. Shirley, and C. Barré-Brisebois,
“Introduction to directx raytracing,” in ACM SIGGRAPH 2018
Courses, Aug. 2018.

[15] J. Schmittler, I. Wald, and P. Slusallek, “SaarCOR – a hardware ar-
chitecture for realtime ray-tracing,” in EUROGRAPHICS Workshop
on Graphics Hardware, Sep. 2002.

[16] J. Schmittler, S. Woop, D. Wagner, W. Paul, and P. Slusallek,
“Realtime ray tracing of dynamic scenes on an FPGA chip,” in
Graphics Hardware Conference, Aug. 2004, pp. 95–106.

[17] S. Woop, J. Schmittler, and P. Slusallek, “RPU: A programmable
ray processing unit for realtime ray tracing,” ACM Trans. on
Graphics, vol. 24, no. 3, Jul. 2005.

[18] S. Woop, E. Brunvand, and P. Slusallak, “Estimating performance
of a ray tracing ASIC design,” in IRT ’06, Sep. 2006.

[19] H. Kim, Y. Kim, and L. Kim, “Reconfigurable mobile stream
processor for ray tracing,” in Custom Int. Circ. Conf. (CICC), 2010.

[20] H.-Y. Kim, Y.-J. Kim, and L.-S. Kim, “MRTP: Mobile ray tracing
processor with reconfigurable stream multi-processors for high
datapath utilization,” IEEE JSSC, vol. 47, no. 2, pp. 518–535, 2012.

[21] W. Lee, Y. Shin, J. Lee, J. Kim, J. Nah, S. Jung, S. Lee, H. Park,
and T. Han, “Sgrt: A mobile GPU architecture for real-time ray
tracing,” in HPG ’13, 2013.

[22] J. Nah, H. Kwon, D. Kim, C. Jeong, J. Park, T. Han, D. Manocha,
and W. Park, “Raycore: A ray-tracing hardware architecture for
mobile devices,” ACM TOG, vol. 33, no. 5, 2014.

[23] I. Wald, C. P. Gribble, S. Boulos, and A. Kensler, “Simd ray stream
tracing-simd ray traversal with generalized ray packets and on-
the-fly re-ordering,” SCI Institute, U. of Utah, Tech. Rep. UUSCI-
2007-012, 2007.

[24] C. Gribble and K. Ramani, “Coherent ray tracing via stream
filtering,” in IRT ’08, 2008.

[25] J. Bikker, “Improving data locality for efficient in-core path trac-
ing,” in Computer Graphics Forum, vol. 31, no. 6, 2012.

[26] R. Barringer and T. Akenine-Möller, “Dynamic ray stream traver-
sal,” ACM Trans. Graph., vol. 33, no. 4, Jul. 2014.



AUTHOR PREPRINT, AUGUST 2020 11

[27] K. Ramani and C. Gribble, “StreamRay: A stream filtering archi-
tecture for coherent ray tracing,” in ASPLOS ’09, 2009.

[28] A. Lier, M. Stamminger, and K. Selgrad, “CPU-style SIMD ray
traversal on GPUs,” in HPG ’18, 2018.

[29] V. Govindaraju, P. Djeu, K. Sankaralingam, M. Vernon, and W. R.
Mark, “Toward a multicore architecture for real-time ray-tracing,”
in IEEE/ACM Micro ’08, October 2008.

[30] J. Kelm, D. Johnson, M. Johnson, N. Crago, W. Tuohy, A. Mahesri,
S. Lumetta, M. Frank, and S. Patel, “Rigel: an architecture and
scalable programming interface for a 1000-core accelerator,” in
ISCA ’09, 2009.

[31] J. Spjut, D. Kopta, S. Boulos, S. Kellis, and E. Brunvand, “TRaX:
A multi-threaded architecture for real-time ray tracing,” in IEEE
SASP, 2008.

[32] T. Aila, S. Laine, and T. Karras, “Understanding the efficiency of
ray traversal on GPUs – Kepler and Fermi addendum,” NVIDIA
Technical Report NVR-2012-02, Jun. 2012.

[33] W. Lee, Y. Shin, S. Hwang, S. Kang, J. Yoo, and S. Ryu, “Reorder
buffer: an energy-efficient multithreading architecture for hard-
ware mimd ray traversal,” in HPG ’15, 2015.

[34] M. Son and S.-E. Yoon, “Timeline scheduling for out-of-core ray
batching,” in HPG ’17, 2017.

[35] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,
and I. Wald, “Packet-based Whitted and Distribution Ray Trac-
ing,” in GI ’07, May 2007.

[36] T. J. Purcell, I. Buck, W. R. Mark, and P. Hanrahan, “Ray tracing
on programmable graphics hardware,” ACM Trans. on Graphics,
vol. 21, no. 3, 2002.

[37] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan, “Rendering
complex scenes with memory-coherent ray tracing,” in Proc. of
SIGGRAPH, ser. SIGGRAPH ’97, 1997.

[38] J. Bigler, A. Stephens, and S. G. Parker, “Design for parallel
interactive ray tracing systems,” in IRT ’06, 2006.

[39] B. Moon, Y. Byun, T.-J. Kim, P. Claudio, H.-S. Kim, Y.-J. Ban, S. W.
Nam, and S.-E. Yoon, “Cache-oblivious ray reordering,” ACM
Trans. Graph., vol. 29, no. 3, 2010.

[40] C. Eisenacher, G. Nichols, A. Selle, and B. Burley, “Sorted deferred
shading for production path tracing,” Computer Graphics Forum,
vol. 32, no. 4, 2013.

[41] P. Navrátil, D. Fussell, C. Lin, and W. Mark, “Dynamic ray
scheduling to improve ray coherence and bandwidth utilization,”
ser. IRT ’07, 2007.

[42] T. Aila and T. Karras, “Architecture considerations for tracing
incoherent rays,” ser. HPG ’10, 2010.

[43] T. Viitanen, M. Koskela, P. Jääskeläinen, H. Kultala, and J. Takala,
“Mergetree: A fast hardware HLBVH constructor for animated ray
tracing,” ACM Trans. Graph., vol. 36, no. 5, Oct. 2017.

[44] D. Meister and J. Bittner, “Parallel reinsertion for bounding vol-
ume hierarchy optimization,” in CGF, vol. 37, no. 2, 2018.

[45] J. A. Tsakok, “Faster incoherent rays: Multi-BVH ray stream trac-
ing,” in HPG ’09, 2009.

[46] M. Hapala, T. Davidovič, I. Wald, V. Havran, and P. Slusallek,
“Efficient stack-less BHV traversal for ray tracing,” in SCCG ’11,
Apr. 2013.

[47] D. Kopta, K. Shkurko, J. Spjut, E. Brunvand, and A. Davis, “Mem-
ory considerations for low energy ray tracing,” CGF, vol. 34, no. 1,
2015.

[48] S. Keely, “Reduced precision for hardware ray tracing in GPUs,”
in HPG ’14, 2014.

[49] T. Kim, B. Moon, D. Kim, and S. Yoon, “RACBVHs: Random-
accessible compressed bounding volume hierarchies,” IEEE
TVCG, vol. 16 2, 2010.

[50] K. Selgrad, A. Lier, M. Martinek, C. Buchenau, M. Guthe, F. Kranz,
H. Schäfer, and M. Stamminger, “A compressed representation for
ray tracing parametric surfaces,” ACM Trans. Graph., vol. 36, no. 1,
Nov. 2016.

[51] W. A. Wulf and S. McKee, “Hitting the Memory Wall: Implications
of the Obvious,” Comp. Arch. News, vol. 23, no. 1, March 1995.

[52] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas, “Memory Hierarchy Reconfiguration for Energy
and Performance in General-Purpose Processor Architectures,” in
MICRO ’00, 2000.

[53] B. Jacob, S. W. Ng, and D. T. Wang, Memory Systems - Cache, DRAM,
Disk. Elsevier, 2008.

[54] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley,
A. Udipi, A. Shafiee, K. Sudan, M. Awasthi, and Z. Chishti,

“USIMM: the Utah SImulated Memory Module,” University of
Utah, Tech. Rep. UUCS-12-02, 2012.

[55] E. Brunvand, D. Kopta, and N. Chatterjee, “Why graphics pro-
grammers need to know about DRAM,” in SIGGRAPH 2014
Courses, 2014.

[56] E. Vasiou, K. Shkurko, I. Mallett, E. Brunvand, and C. Yuksel, “A
detailed study of ray tracing performance: render time and energy
cost,” The Visual Computer, vol. 34, no. 6, Jun. 2018.

[57] J. Poulton, H. Fuchs, J. D. Austin, J. G. Eyles, J. Heineche, C. Hsieh,
J. Goldfeather, J. P. Hultquist, and S. Spach, “PIXEL-PLANES:
Building a VLSI based raster graphics system,” in Chapel Hill
Conference on VLSI, 1985.

[58] H. Fuchs, J. Goldfeather, J. P. Hultquist, S. Spach, J. D. Austin,
J. F. P. Brooks, J. G. Eyles, and J. Poulton, “Fast spheres, shad-
ows, textures, transparencies, and imgage enhancements in pixel-
planes,” in SIGGRAPH ’85, 1985.

[59] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth,
S. Molnar, G. Turk, B. Tebbs, and L. Israel, “Pixel-planes 5: A
heterogeneous multiprocessor graphics system using processor-
enhanced memories,” in SIGGRAPH ’89, 1989.

[60] Y. Thonnart and M. Zid, “Technology assessment of silicon inter-
posers for manycore socs: Active, passive, or optical?” in IEEE
Networks on Chip confrence, ser. NoCs ’14, Sep. 2014.

[61] A. Usman, E. Shah, N. B. Satishprasad, J. Chen, S. A. Bohlemann,
S. H. Shami, A. A. Eftekhar, and A. Adibi, “Interposer technologies
for high-performance applications,” IEEE Trans. on Components,
Packaging and Mfc. Tech., vol. 7, no. 6, Jun. 2017.

[62] C. Lee, C. Hung, C. Cheung, P. Yang, C. Kao, D. Chen, M. Shih,
C. C. Chien, Y. Hsiao, L. Chen, M. Su, M. Alfano, J. Siegel, J. Din,
and B. Black, “An overview of the development of a GPU with
integrated HBM on silicon interposer,” in IEEE ECTC ’16, May
2016.

[63] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-chip-
module GPUs for continued performance scalability,” in ISCA ’17,
2017.

[64] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “Cacti 7: New tools for interconnect exploration
in innovative off-chip memories,” ACM Trans. Archit. Code Optim.,
vol. 14, no. 2, Jun. 2017.

[65] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srinivas,
“Cacti-io: Cacti with off-chip power-area-timing models,” in IC-
CAD ’12, 2012.

[66] K. Shkurko, T. Grant, D. K. E. Brunvand, J. Spjut, E. Vasiou,
I. Mallett, and C. Yuksel, “Simtrax: Simulation infrastructure for
exploring thousands of cores,” in Great Lakes Symposium on VLSI
(GLSVLSI), 2018.

[67] J. Kajiya, “The rendering equation,” in SIGGRAPH ’86, 1986.
[68] R. Gonzales and M. Horowitz, “Energy dissipation in general pur-

pose microprocessors,” IEEE Journal of Solid-State Circuits, vol. 31,
no. 9, 1996.

[69] Z. Zhang, Z. Zhu, and X. Zhang, “Design and optimization of large
size and low overhead off-chip caches,” IEEE Trans. on Computers,
vol. 53, no. 7, 2004.

[70] JDEC Standard, “High bandwidth memory (HBM) DRAM,” JDEC
Solid State Tech. Assn., Tech. Rep. JESD325A, Nov. 2015.

[71] R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yala-
manchili, and H. Kim, “Demystifying the characteristics of 3d-
stacked memories: A case study for hybrid memory cube,” in
IISWC, 2017.

Elena Vasiou received BS degree in mathe-
matics from Davidson College in 2015. She is
currently working toward a PhD in computer
graphics at the School of Computing at the Uni-
versity of Utah. Her research focuses on ray
tracing hardware, energy-efficient graphics ac-
celerators, graphics architectures, and real-time
graphics.



AUTHOR PREPRINT, AUGUST 2020 12

Konstantin Shkurko received his PhD in com-
puter graphics from the School of Computing at
the University of Utah in 2019. His research in-
terests focus mainly on ray tracing hardware, but
also include acceleration structures, rendering
algorithms, and scientific visualization.

Erik Brunvand received his PhD from Carnegie
Mellon University in 1990. Since then he has
been a faculty member in the School of Com-
puting at the University of Utah where his in-
terests include the design of application-specific
computers, graphics processors, physical com-
puting, asynchronous systems, VLSI integrated
circuit design, and arts/technology collaboration
and integration in both research and education.

Cem Yuksel is a faculty member in the School
of Computing at the University of Utah. Previ-
ously, he was a postdoctoral fellow at Cornell
University, after receiving his PhD in Computer
Science from Texas A&M University in 2010. His
research interests are in computer graphics and
related fields, including physically-based simula-
tions, rendering techniques, global illumination,
sampling, GPU algorithms, graphics hardware,
knitted structures, and hair modeling, animation,
and rendering.


