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ABSTRACT

The immense progress of imaging technologies has radically changed the prac-

tice of medicine both in terms of diagnosis and intravascular surgery. Using

technologies such as magnetic resonance imaging (MRI), and computed axial

tomography (CAT) scans, doctors are now able to “see” internal organs and

structures in high-resolution detail. Today using expensive specialized hard-

ware, one can generate three-dimensional visualizations providing accurate in-

terpretations and revolutionizing the medical field.

This thesis presents a substantially different method to visualize volume

datasets by treating them as a scattering volume and rendering the images on a

small cluster of parallel computers. With sufficient computing power, the data

can be explored interactively without any loss of information.

We utilize a basic raycasting algorithm with several acceleration techniques,

such as global empty space skipping, early ray termination, a local gradient

cache and increased data access coherency. By selecting efficient data subdivi-

sions, we eliminate the memory and bus-bandwidth latencies and maximize the

computing power of each core. The cache coherence of the data access due to

the bricking scheme produced almost real-time rendering speeds that are inde-

pendent of the viewing direction. We tested these algorithms on three different

datasets at varying output image resolutions.

In the near future, with increased computing power and sufficient band-

width, it will be possible to use a cluster of machines to render time-dependent

datasets in real time and to deliver these images directly into an operating room.
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CHAPTER 1

INTRODUCTION

The immense progress and development of imaging technologies has radically

changed the practice of medicine both in terms of diagnosis and intravascu-

lar surgery. Using technologies such as X-rays, positron emission tomography

(PET) scans, magnetic resonance imaging (MRI), and computed axial tomogra-

phy (CAT) scans, doctors are now able to “see” internal organs and structures

in high-resolution detail. The visualization of this data has revolutionized the

medical field.

In the past, standard methods for imaging technology involved looking

at two-dimensional images with skilled experts, usually radiologists, inter-

preting the results. However today volumetric imaging software can gener-

ate three-dimensional visualizations providing much more accurate interpre-

tations. Powerful software and hardware implementations have evolved so

that several commercially available workstations allow the physician to inter-

actively navigate and explore the data. Algorithms using segmentation tech-

niques, which create surface models from three-dimensional datasets, are fre-

quently used but this requires costly pre-computation time and is usually con-

ducted within a physician’s office.

This thesis proposes a substantially different method to visualize datasets

by treating them as a scattering volume without the creation of additional arti-

facts. With sufficient computing power, the data can be explored interactively

without any loss of information. As we enter into a new realm of computer en-

vironments with “cloud computing” and parallel architectures, it will now be

possible to bring these visual results directly into the operating room provid-
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ing yet another beneficial tool for the intravascular surgeons. Without the use

of any specialized hardware, we have attempted to provide real-time, three-

dimensional visualization of the internal organs of a patient using a small clus-

ter of parallel machines. Although with the size of our cluster we cannot quite

achieve real-time visualization (30 frames per second, fps), we can effectively

and efficiently render complex datasets at ten frames per second. With the

advances in hardware technology, we anticipate that providing this capability

combined with image-processing techniques that can position X-ray or fluo-

roscopic images obtained during surgery, we can provide better visualization

tools in an economic manner.

The rest of this chapter is organized in the following way. We state the pre-

cise problem this thesis addresses in Section 1.1 and describe the data parame-

ters in Section 1.2. We define several important terms in Section 1.3 and outline

the organization for the rest of this work in Section 1.4.

1.1 Problem Statement

As scanned medical datasets are growing in size and being used more fre-

quently, visualization techniques that are accurate and interactive are becom-

ing essential. This work focuses on creating and evaluating a system capable of

real-time visualization of three-dimensional (3D) medical scan data. A typical

output of our system is shown in Fig. 1.1. We require that each high resolution

output image is generated fast enough to allow real-time viewing (refresh rate

of at least 30 Hertz); that the algorithm must not degrade output image quality

and that all relevant data is shown. Because our interest is in the medical field,

2



Figure 1.1: An example of a volume rendering output.

we focus on visualizing computed tomography (CT) datasets, introduced in the

following section.

1.2 Data Description

The CT volume datasets store a density representation, which is measured in

Hounsfield units (HU). These units place air at −1000 HU, water at 0 HU and

bone above 400 HU. The data is quantized for storage as 12-bit integers, which

may or may not be signed. Signed data has the range of [−1024, 3071] and un-

signed has the range of [0, 4095], [NEM08]. Other quantizations are applicable

but are not used in this work.
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Figure 1.2: CT volume dataset as a stack of images.

The dataset can be thought of as a stack of images, shown in Fig. 1.2. Typical

resolutions include several hundred images of 512 × 512, although they can ex-

ceed 1, 000 slices at 1024 × 1024. The typical distance between each data sample

in a slice with the resolution of 512 × 512 is 0.075 cm (0.0295 in) and 0.077 cm

(0.0303 in) between slices. As the scanning technology improves, datasets with

higher resolutions will need to be rendered.

1.3 Voxel and Cuboid Definitions

We need to consider the CT dataset as a collection of data samples, where each

sample represents a density value of a differential volume of material. Each

data value is assumed to lie at the center of its differential volume. We refer to

these dataset samples as voxels, which can be thought of as volumetric pixels.

Pictorially, this is shown in two dimensions (2D) in Fig. 1.3(a).
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extent of a differential volume

voxel

(a) A voxel as a dataset sample

extent of a cuboid

voxel

(b) A cuboid as a collection of voxels

extent of a differential volume

extent of a cuboid

voxel

(c) Comparison of a voxel volume and a cuboid

Figure 1.3: A definition of a voxel and a cuboid in 2D for a small volume.

Unfortunately, differential volumes around voxels do not help with defining

interpolating functions (discussed in Section 2.3). As a result, we need a dif-

ferent construction - a cuboid. Like a cube, which generalizes a square to three

dimensions, a cuboid generalizes a rectangle. In order to see this construct,

we need to think about the dataset as a collection of voxels organized in a 3D

grid. Connecting eight nearest voxels surrounding a point within the 3D grid

produces the cuboid, shown in Fig. 1.3(b)1. Because we consider data samples

within a volume, we refer to the cuboid as eight neighboring voxels. Fig. 1.3(c)

compares the physical extends of a voxel volume to a cuboid in 2D.

These definitions formalize the discussions of algorithms in Chapter 2. We

1Note that some of the literature uses voxel to refer to what we defined as a cuboid.
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use voxel to mean dataset samples and cuboid to describe a construct of eight

neighboring voxels connected together.

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 summarises the body of previous

work. We discuss the modules shared by all of the algorithms before provid-

ing their overview and selecting raycasting as the basis for our work. Chapter 3

presents acceleration methods for raycasting and then improvement results. We

focus Chapter 4 on parallelizing the accelerated raycasting algorithm. We dis-

cuss several techniques and evaluate their performance. The discussion of the

overall results is in Chapter 5. We conclude and present directions for future

work in Chapter 6.
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CHAPTER 2

VOLUME RENDERING ALGORITHMS

There has been a large volume of work towards visualizing scalar volume data

since the 1980s. A scalar physical quantity, like density, is sampled to represent

the object to be studied. Earlier algorithms visualize the data by approximat-

ing surfaces of a constant value, called iso-surfaces. Marching Cubes, [LC87],

is a well known method of this type. It uses a mesh of triangles located in-

side cuboids. First, cuboid vertices are thresholded to determine those which

lie outside the iso-surface. A voxel is considered outside (inside) if its density is

higher (lower) than the density value of the iso-surface. If one vertex is outside

and another inside, then the edge connecting them intersects the iso-surface

and contains a vertex of a triangle approximating the iso-surface. There are

28 = 256 possible triangle configurations, which Lorensen and Cline reduced to

14 by accounting for symmetries. After classifying the cuboid to hold one of

these cases, the algorithm uses linear interpolation to compute triangle vertex

locations along cuboid edges. Generating the triangle mesh in Marching Cubes

can be parallelized by exploiting the independence of data. Once the surface

has been generated, a modern graphics board can produce the output images

quickly. However, there is a major drawback to this method, when the user de-

cides to view an iso-surface of a different value. Each time the value changes its

iso-surface must be regenerated before being displayed, which can take a large

amount of time. Another drawback of the original method is low accuracy of

the iso-surface approximation via the triangle mesh with vertex locations esti-

mated by linear interpolation along the cuboid’s edges. Because the scalar data

is used to generate triangle meshes to be displayed, the Marching Cubes algo-

rithm belongs to a class of indirect volume rendering methods [MHB+00].
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On the other hand, direct volume renderers would use the scalar data di-

rectly to compute the exact intersection of an iso-surface with each viewing ray

instead of rasterizing triangle meshes generated from the data. Levoy intro-

duced this set of methods by formulating the direct volume rendering pipeline1

for iso-surface generation in [Lev88]. Without changing the pipeline, Levoy’s

framework can be extended to create a completely different way to visualize 3D

scalar data. Instead of rasterizing2 surfaces of constant value, these methods in-

tegrate opacity-weighted colors derived from data along a viewing ray through

the volume. Because direct volume renderers display the data directly without

modifying it, they are preferred by medical professionals, [NT01].

Volume visualization algorithms can be classified in a manner shown in Fig.

2.1. A natural classification comes from which projective transformation is used:

either orthographic or perspective. All image rays in an orthographic projec-

tion have a constant (vector) direction equal to the normalized viewing direc-

tion, which allows for a few computational simplifications. However, because

all viewing rays are parallel, the output image lacks perspective fidelity. As a

result, one can measure geometric distances directly, but may have trouble cor-

rectly judging spatial relationships between the displayed objects.

Perspective projection methods use rays emanating from a virtual camera

(eye) through the image plane to create very realistic images. As a result of di-

verging viewing rays, methods using this projection can be prone to errors from

undersampling data far away from the eye. Because each ray has its own direc-

tion, this projection is computationally more expensive. Furthermore, the non-

1We consider the volume rendering pipeline as a sequence of computing steps that takes a
volume dataset as input and produces an image.

2Triangle rasterization is a process of converting (projecting) a triangle in three-space onto
the output image pixels.

8



3D Scalar Data 
Rendering Algorithms

Iso-surface

Volume

Mixed

Direct

Indirect

Direct

Perspective

Orthographic

Perspective

Orthographic

Perspective

Orthographic

Pre

Post

Pre

Post

Result 
displayed as Use of data

Viewing 
projection

Order of data 
classification 

Figure 2.1: Classification of volume rendering algorithms.

linearity of the depth makes distance computations between objects non-trivial.

An important characteristic to note is that orthographic transformation is math-

ematically equivalent to the perspective transformation with the eye located at

infinity.

All volume rendering algorithms produce a visualization of the data, given

a user-defined transfer function which assigns colors and opacities to data sam-

ples. These samples are usually located along viewing rays cast into the volume,

but the data may be sampled in a variety of other ways.

Volume renderers can be divided further by the application order of data

classification and interpolation. Classification of a data sample is the process of
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Figure 2.2: Pre-classified (left column) and post-classified rendering (right col-
umn). The latter yields sharper images since the opacity and color classification
is performed after interpolation. This method eliminates the blurry edges intro-
duced by the interpolation filter, [KM05].

assigning to it a material based on the data value. Material properties, like color

and opacity, are stored in the transfer function. Pre-classification methods first

use the transfer function to generate colors and opacities for each voxel near the

sample location. Then, these colors and opacities are interpolated to generate

the final sample color and opacity [MHB+00]. If, on the other hand, the data

is interpolated to approximate the value of the sample and then the transfer

function is used to classify it, the method is considered post-classifying. Post-

classification tends to produce sharper images as shown in Fig. 2.2.
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In addition to interpolation and classification of data, all volume rendering

algorithms share two additional modules necessary to produce the final image:

shading and compositing. Shading a sample produces a color based on its clas-

sification and, if desired, approximating the shape of the iso-surface the sample

lies on by adding a specular highlight that depends on the surface curvature.

Compositing combines multiple samples together while incorporating their oc-

clusion due to the accumulated opacity along the viewing ray.

To discuss the differences between various algorithms, we must elaborate on

the shared modules between them. We start with the model for the interaction

of light with the volumetric data, which is considered to be a collection of small

particles with specific physical properties of light transport. The remainder of

this chapter is organized as follows. We derive the commonly used low-albedo

rendering integral via the Emission-Absorption Illumination Model in Section

2.1. The transfer function is described in detail in Section 2.2. Section 2.3 focuses

on the interpolation kernels, and Section 2.4 discusses the details of the most

prominent direct volume rendering algorithms. We conclude in Section 2.5.

2.1 Emission-Absorption Illumination Model

A model for the interaction of light with volume data needs to be established be-

fore being able to generate images. We start with the physical description of the

model, derive the general rendering equation and then formulate the widely-

used low-albedo rendering integral. This was introduced in [Bli82, KH84] and

formally derived in [Max95]. Max’s derivation is briefly described below.

The optical behavior of the volumetric data can be modeled as a cloud of

11



Δs

B

Figure 2.3: A cylindrical slab of volumetric material used to derive the
Emission-Absorption Illumination Model. Each small circle represents a per-
fectly spherical volumetric particle that absorbs and emits light. Here, B is the
surface area of the base and �s is the thickness of the cylinder. Figure modified
from [Max95].

small particles that are homogeneously distributed within a small volume and

can absorb, scatter and emit light. For the sake of simplicity, we consider a

medium with negligible contribution from multiple (particle-particle) scatter-

ing. In other words, it is composed of low-albedo particles which have low

reflectivity. One physical interpretation of this situation is that the particles are

very small resulting in a little chance of being hit by light. An alternative inter-

pretation is that the particles are highly absorbing, and hence have little chance

to reflect light.

For the sake of simplicity, assume that these particles are identical perfect

spheres of radius r and projected area A = πr2. Let ρ be the volume density

of the particles in a cylinder of volume B�s, shown in Fig. 2.3. This cylinder

contains N = ρB�s number of particles.

Using this physical model, we derive the simple absorption-only case, which

we later extend to include emission. For the discussion on including multiple

12



scattering into the model, see [Max95, Bli82]. If we assume �s, the width of the

cylinder, is small allowing few overlaps3 between projected volumes of parti-

cles, then the total occlusion area due to the particles becomes NA = ρB�sA. In

the perfect absorption-only case, each particle absorbs all of the light that hits

it. The fraction of light flowing through the base of the cylinder that is occluded

can be derived as ρB�sA/B = ρ�sA. In the limit of the cylinder’s thickness ap-

proaching 0, �s → 0, we get the following differential equation for the light

intensity along a ray:
dI
ds
= −τ(s)I(s), (2.1)

where s is the location along a ray in the direction of light and τ(s) = ρ(s)A is the

extinction coefficient defining the rate of occlusion of light. The negative sign

is necessary because, as the light travels deeper into the participating media, a

larger portion of it is absorbed by the particles.

Let’s consider a completely opposite scenario where particles are perfectly

emissive. In this case, the model is analogous to a very hot and almost transpar-

ent gas that glows. Once again, consider the situation shown in Fig. 2.3 where a

cylinder of volume B�s contains ρB�sA number of perfectly spherical particles.

Let these particles glow with intensity C per unit projected area, producing a

glow flux per unit area of Cρ�sA through the base of the cylinder, [Max95]. Tak-

ing a limit of the cylinder’s width, �s → 0, yields the following differential

equation of light intensity for the emission-only case:

dI
ds
= C(s)ρ(s)A = C(s)τ(s) = g(s), (2.2)

where g(s) is the source term that accounts for emission.
3The low-albedo assumption implies that the homogeneously distributed absorbing particles

are tiny (or that there are few of them in the volume), thus the likelihood that the projected
volumes of particles overlap is small.
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Combining the differential equations describing absorption in Equation (2.2)

and emission in Equation (2.2), we arrive at

dI
ds
= g(s) − τ(s)I(s). (2.3)

This differential equation has the following solution, derived in [Max95]:

I(L) = I0T
(
0, L

)
+

L∫
0

g(s)T
(
s, L

)
ds T (s1, s2) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
s2∫

s1

τ(t) dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (2.4)

where I0 is the light intensity along the ray prior to entering the medium and

T (s1, s2) calculates the light attenuation between locations s1 and s2 along a ray.

This formulation is in back-to-front order along the viewing ray, so the far edge

of the volume is located at s = 0, while s = L is a location within the volume or

the point where the ray exits near the eye. Equation (2.4) is the general rendering

equation. In practice, most algorithms use a slightly different form where the

source term defined in Equation (2.2) is kept as g(s) = C(s)τ(s) with C(s) as the

intensity (color) of the sample. This form of the rendering equation accounts for

the higher reflectivity of particles with larger volume densities, [MHB+00]. The

end result of this manipulation is the widely-used low-albedo formulation:

I(L) = I0T
(
0, L

)
+

L∫
0

C(s)τ(s)T (s, L) ds T (s1, s2) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
s2∫

s1

τ(t) dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (2.5)

In order to compute the light intensity I(L), we need to discretize Equation

(2.5) converting the integrals into Riemann sums. By dividing the interval from

0 to L into n segments of equal length, we define �s = L/n. For the sake of sim-

plicity, let si = i�s, i = 1 . . . n, be a sample corresponding to ith segment of the

viewing ray. To discretize the transparency function T (sk, sm) defined in Equa-

tion (2.5), let sk = k�s and sm = m�s and assume that the extinction coefficient

14



τ(i�s) is constant along each segment si. Hence

T (sk, sm) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
sm∫

sk

τ(s) ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = exp

⎛⎜⎜⎜⎜⎜⎝− m∑
i=k

τ(i�s) �s

⎞⎟⎟⎟⎟⎟⎠
=

m∏
i=k

exp
(
− τ(i�s) �s

)
=

m∏
i=k

ti.

(2.6)

To simplify further, use the Taylor series of the exponential function:

ti = exp
(
− τ(i�s)�s

)
= 1 − τ(i�s)�s +

(
τ(i�s)�s

)2

2
− O(�s3), (2.7)

where the term ti defines the transparency of the ith segment and is opposite to

the opacity

αi = α(i�s) = 1 − t(i�s) = 1 − ti = τ(i�s)�s + O(�s2). (2.8)

As shown in Section 2.4, volume rendering algorithms use opacities instead of

transparencies along ray segments. Converting Equation (2.6) to use opacities

gives:

T (sk, sm) =
m∏

i=k

exp
(
− τ(i�s) �s

)
=

m∏
i=k

ti =

m∏
i=k

(1 − αi). (2.9)

Substituting the above into Equation (2.5), and using n = L/�s:

I(L) = I0T
(
0, L

)
+

L∫
0

C(s)τ(s)T
(
s, L

)
ds

≈ I0

n∏
i=1

(
1 − α(i�s)

)
+

n∑
i=1

C(i�s)α(i�s) ·
n∏

j=i+1

(
1 − α( j�s)

)
(2.10)

= I0

n∏
i=1

(1 − αi) +
n∑

i=1

Ciαi

n∏
j=i+1

(1 − α j). (2.11)

The formula for the light intensity, Equation (2.11), is recursive in (1−α) and

leads to the famous recursive front-to-back compositing formula, [PD84, Lev88]:

cnew = C(i�s)α(i�s)(1 − αold) + cold

αnew = α(i�s)(1 − αold) + αold,

(2.12)
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input : Opacities αi=a[i] and emission colors Ci=C[i] for samples along
the ray. Background light intensity I0=Io

output: Composited output color for ray

1 rayColor ← 0;
2 T ← 1.0 ; // accumulated ray transparency
3 i ← n;
4 while T > small threshold && i > 0 do
5 rayColor ← rayColor + T * C[i] * a[i];
6 T ← T * (1 - a[i]);
7 i ← i - 1;
8 end
9 rayColor ← rayColor + Io * T;

10 return resulting pixel color rayColor;

Figure 2.4: Algorithm for compositing a ray in the front-to-back order, resulting
from Equation (2.13), [Max95]. For a ray shot from the eye into the volume, the
nth sample occurs at the entrance closest to the eye and the first sample occurs
at the exit. The small threshold parameter on line 4 stops sample compositing
early if the contribution from the upcoming samples becomes negligible.

where cnew and αnew are the resulting color and opacity, while cold and αold are the

previously composited color and opacity. C(i�s) and α(i�s) are the color and

opacity of the sample located at si = i�s. If we unroll Equation (2.11) and use

1 − αi = ti, we can derive an alternative formula to compute the output color:

I(L) = I0

n∏
i=1

(1 − αi) +
n∑

i=1

Ciαi

n∏
j=i+1

(1 − α j)

= Cnαn + tn

(
Cn−1αn−1 + tn−1

(
. . . (C1α1 + t1I0) . . .

))
. (2.13)

This leads to a front-to-back compositing algorithm, shown in Fig. 2.4.

Both of the compositing algorithms require colors and opacities of samples

located at si, for i = 1 . . . n. These quantities are obtained by applying a user-

defined transfer function to each of the samples. The next section discusses

transfer functions.
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2.2 Sample Color and Opacity via a Transfer Function

In the previous section, we have established the low-albedo model for volume-

light interaction. We also introduced two schemes for compositing samples

along a ray within the volume. However, the volume data represents a scalar

physical quantity like density and does not automatically provide a mapping to

colors and opacities. As a result, volume renderers rely on a user to provide a

transfer function for this necessary correspondence.

There are two ways to define a transfer function precisely depending on

whether the data is mapped to colors and opacities separately. Noting that both

data and opacity are scalars, while color is a three-vector, one can define a com-

bined transfer function as: Ψco : R → R
4. The secondary definition, used in

this work for simplicity, splits the transfer function into two components: color,

Ψc : R → R3, and opacity, Ψo : R → R. One can also include a gradient (three-

vector) as an input into the transfer function in a manner similar to the direct

volume renderer Levoy introduced in [Lev88] and extended in [Lev90].

Transfer functions Ψ have several properties that should be mentioned.

Clearly, their domain depends on the input data. For example, the density

data from a Computed Tomography (CT) scan lies in the range of [0, 4095] or

[−1024, 3071], [NEM08]. The range of Ψc ultimately depends on the output

display device. A typical monitor can display 24-bit color values at eight bits

per color channel, thus limiting the range of the color transfer function Ψc to

[0, 255]3. It is possible to allow Ψc to produce floating point values; however,

with the current displays constrained to eight bits per color channel, there is

no way to display this directly without applying a windowing transformation,
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which remaps the dynamic range into a displayable color. This is a limitation

of the current technology that will eventually be removed. The opacity trans-

fer function Ψo has a floating point range of [0, 1] with zero representing full

transparency and one representing full occlusion of the sample.

An important property of transfer functions is that they map every piece of

input data to a color and opacity. Transfer functions do not have to require that

for every piece of input data there is only one color and opacity. As a result, one

piece of data can map only to one color and opacity; otherwise, the algorithm

has to pick the correct classification from multiple possibilities.

There are several ambiguities in the formulation of the rendering integral in

Equation (2.5). The first is that the sample color can be defined in several ways

depending on the desired application. For example, the color can include light

reflections to add a sense of shape of the iso-surface the sample lies on. Thus

the color term C(s) can be broken apart into C(s) = E(s)+ T (s)+ R(s), where E(s)

is the emission, T (s) is the transmission and R(s) is the reflection of light at a

sample location s.

The emission E(s) can be considered to be of the same color as the mate-

rial the sample is classified as, E(s) = Ψc(s). In the case that the iso-surface

is semi-transparent, T (s) can be computed by compositing the contributions of

all samples located on this ray behind the surface. Because this is the same as

continuing to integrate along the ray, this term can be omitted.

The Blinn-Phong bidirectional reflectance distribution function, [DBB06],

can be used to compute the reflective part of C(s):

R(s) = kaCa + kdClΨc(s)
(
N(s) · L(s)

)
+ ksCl

(
N(s) · H(s)

)n(s)

, (2.14)
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Variable Description

ka ambient light coefficient
kd diffuse reflection coefficient
ks specular reflection coefficient
Ca ambient color
Cl color of the light source
Ψc(s) reflective color of the material
N(s) normal vector of iso-surface at sample location
L(s) light direction vector
H(s) normalized half-vector between the light and the viewing vector
n(s) specular Phong exponent

Table 2.1: Variables in the Blinn-Phong reflection model, [DBB06].

where s is the location of the sample. Table 2.1 defines the rest of the variables.

To produce physically-correct lighting, the intensity of the light Cl should be

attenuated by the transparency of the volumetric media along the light’s path,

C′
l (s) = ClT (l, s). This introduces self-shadowing effects, shown in Fig. 2.5. They

might be desirable, [KM05], but come at a high computational price because for

every sample, the algorithm must integrate opacities through the volume along

the path between the sample location and the light. As a result, most algorithms

omit this attenuation factor.

Another ambiguity in Equation (2.5) comes from the application of the trans-

fer function to 3D locations given by s, the scalar location along a ray. Let-

ting O be the origin of the viewing ray and d its direction, defines 3D location

s(s) = O + s · d. An implicit sampling function S (s) = S
(
s(s)

)
maps a 3D location

to a scalar data value, S : R3 → R. The relationship between emission E, opac-

ity τ, color transfer function Ψc, and opacity transfer function Ψo can be stated

precisely as:

E(s) = Ψc

(
S
(
O + s · d

))
= Ψc

(
S (s)

)
τ(s) = Ψ0

(
S
(
O + s · d

))
= Ψo

(
S (s)

)
.

(2.15)

Rewriting Equation (2.5) using the above relationships and including the sur-
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Figure 2.5: CT lobster dataset rendered without shadows (left) and with shad-
ows (right). The shadows on the wall behind the lobster as well as self-
shadowing of the legs creates greater realism, [KM05].

face shading decomposition of C(s) = E(s) + R(s), we get

T (s1, s2) = exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝−
s2∫

s1

Ψo
(
S (t)

)
dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
I(L) = I0T

(
0, L

)
+

L∫
0

(
Ψc

(
S (s)

)
+ R

(
S (s)

))
Ψo

(
S (s)

)
T
(
s, L

)
ds.

(2.16)

Before describing various direct volume rendering approaches, sampling func-

tions S (s) have to be discussed to remove the last technical ambiguity. This is

presented in the next section.

2.3 Interpolation Function

Volume rendering algorithms generate an intensity of a ray through the volu-

metric data by compositing samples along it. Because samples almost never

overlap with any of the data locations, one needs a way to interpolate data

values. Pre-classification algorithms use the interpolation function to combine

colors and opacities of the data near the sample. Post-classification algorithms
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Figure 2.6: A cuboid formed by connecting eight nearest voxels surrounding
the location of the sample S . The data naming convention Di, j,k is relative to that
sample.

use the interpolation function to combine the data near the sample. The most

important properties of interpolation functions are the amount of introduced

smoothing and the speed of calculation. In this section, we consider a few inter-

polating kernels: nearest neighbor, bi-linear, tri-linear and Gaussian-weighted.

To simplify the discussion in this chapter, we need several definitions. Let

the 3D location of a sample along a ray be s(s) = [sx, sy, sz]T . This is labeled as S

in Fig. 2.6, which shows a cuboid formed by connecting eight voxels neighbor-

ing the location s(s). We use the following naming convention for these voxels:

Di, j,k = D(i, j, k) with {i, j, k} = {0, 1}. Each subscript of Di, j,k refers to the corre-

sponding dimension (x, y, or z respectively) and encodes the location of a voxel

relative to the sample S . Using this notation, we can compute the dataset loca-

tion for a voxel D101 as
(�sx	, 
sy�, �sz	).

The nearest neighbor kernel is the easiest to formulate mathematically be-
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cause it returns the value of the data that is closest to the sample location

S 3D
nn = D

(
round(sx), round(sy), round(sz)

)
, (2.17)

where the function round(x) rounds x to the nearest integer. In 2D, the regions

that interpolate to the same data are shown in Fig. 2.7(a). For data equally

spaced with a distance of one in 3D, these regions become cubes of width one

centered around the data values. The human eye is very sensitive to the jagged

edges and unpleasant staircasing that result from a zero-order interpolation,

and therefore nearest neighbor interpolation generally gives the poorest visual

results, [KM05].

Linear interpolation is widely used because it gives good results with low

computational cost and is easily extended to two (bi-linear interpolation) and

three (tri-linear interpolation) dimensions. Consider a simple 1D case, where

the sample is located at ε in between data points D0 and D1 located at x0 and x1

respectively. The linear interpolation yields

S 1D
lin = D0 + (ε − x0)

D1 − D0

x1 − x0

= D1(ε − x0) − D0
(
1 − (ε − x0)

)
, for x1 − x0 = 1.

(2.18)

To extend this scheme to higher dimensions, the filter is consecutively applied

in each dimension. The bi-linear interpolation can be computed by first inter-

polating in the x direction and then interpolating the results in the y direction

as shown in Fig. 2.7(b). The tri-linear interpolation kernel is shown in Fig.

2.8. It produces reasonably sharp results at the cost of seven linear interpo-

lations, which totals to 14 multiplications and 14 additions per sample for the

data spaced one unit apart. A function interpolated with a linear filter no longer

suffers from staircase artifacts. However, it has discontinuous derivatives at the
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1 × 1 square of data

(c) Gaussian interpolation kernel with σ =
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(d) Normalized filters in the spatial domain:
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Figure 2.7: Comparison between nearest neighbor, bi-linear and Gaussian in-
terpolating kernels. (a)-(c) show application of filters in 2D, while (d) compares
their profiles in 1D.

boundaries between voxel cuboids which can lead to noticeable banding when

the visual qualities change rapidly from one cuboid to the next, [KM05].

Gaussian kernels are typically used to resample images because they act as

a low-pass filter by removing high frequency noise and smoothing out edges.

However, this kernel has infinite support and potentially all data can affect the

interpolated value. To mediate this, the function is clamped at a certain radius,
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Figure 2.8: Tri-linear interpolation kernel applied to a cuboid of data. The kernel
decomposes into seven linear interpolations, given by Equation (2.18). First,
interpolate four pairs of data in the x direction to obtain D00, D10, D01, and D11.
Then interpolate these two pairs in the y direction to obtain D0 and D1. Final
interpolation in the z direction gives the final result S 3D

lin .

such that data beyond it does not contribute to the result. An un-clamped nor-

malized Gaussian kernel centered at a and with a width of σ has the following

form:

G1D(ε; a) =
1√
2πσ

exp
(
− (ε − a)2

2σ2

)
(2.19)

G3D(ε; a) =
1

(2π)
3
2σxσyσz

exp
(
− (εx − ax)2

2σ2
x

− (εy − ay)2

2σ2
y

− (εz − az)2

2σ2
z

)
, (2.20)

where the 3D form of the Gaussian, G3D(ε; a), is obtained by multiplying

G1D(ε{x,y,z}; a{x,y,z}) for each major direction.

Consider a set representing data locations, Aε = {ai}, i = 1 . . . nε, such that

it is the set of all data points within the support of the 3D Gaussian with the

variances σ{x,y,z} centered at the sample location ε. Let Di be the value of the

voxel located at ai ∈ Aε. Thus, the interpolated value located at ε is

S 3D
gaus =

nε∑
i=1

DiG3D(ε; ai). (2.21)
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Similar formalism generates the rule for Gaussian interpolation of data in 1D,

which is shown in Fig. 2.7(c). One must carefully select contributing data for

interpolation since more than eight nearest neighbors may be within the support

of a Gaussian kernel. The low-pass filtering property of this kernel may not be

desirable if the data contains necessary high frequency details which may be

lost in the process.

There are many other interpolating functions that may be useful. It is impor-

tant to consider their computational cost with other properties, like smoothing.

This section concludes the discussion of the assumptions and computations nec-

essary to understand the details of rendering algorithms discussed in the next

section.

2.4 Algorithms

Over the years, there have been many proposed algorithms for volumetric vi-

sualization of 3D scalar datasets. Previous sections provided the necessary

groundwork that most of the popular approaches use. In this section, we

explore the work relevant to raycasting, shear-warp, splatting and hardware-

based methods. For a good overview of these methods, see [MHB+00, MFS06,

KM05].

As described in the beginning of this chapter, a typical volume rendering al-

gorithm involves three essential steps: classification, interpolation and shading

and compositing. The data is interpolated and classified in the order depending

on whether pre- or post-classification is used. This results in a color and opac-

ity at a sample, located on the viewing rays through the output image. These
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Property Raycasting Shear-Warp Splatting

Sampling Rate freely selectable fixed [1.0, 0.58] freely selectable
Sample Evaluation point sampled point sampled averaged across �s

Interpolation Kernel tri-linear bi-linear Gaussian

Data Classification post
pre, opacity-

post
weighted colors

Voxels Considered all relevant relevant

Table 2.2: Distinguishing features of the selected direct volume rendering algo-
rithms. Modified from [MHB+00].

samples get shaded and composited together to provide the final output color.

Pre-classification methods can be accelerated by pre-computing the colors

and opacities of all voxels prior to rendering. Only the visible voxels with

non-zero opacities must be stored. However, this produces a problem simi-

lar to Marching Cubes: the pre-computation has to be redone every time the

transfer function changes. Another issue with pre-classification renderers is the

tendency for excessive blurring when the output image resolution exceeds the

resolution of the volume data. This occurs in zoomed viewing or with wide

perspective frustums, [MHB+00]. Because of these drawbacks, most volume

rendering algorithms use post-classification methodology.

Unfortunately, post-classifying the data has a problem as well. Due to

the partial volume effect, interpolated data can be classified as a material not

present at the sample location, which can lead to false colors in the final image.

This can be avoided by prior segmentation, which can add severe staircasing

artifacts due to the introduced high frequency, [MHB+00].

There are several different direct volume rendering algorithms discussed in

this section: raycasting, shear-warp, splatting, special hardware and texture

mapping. Table 2.2 shows the distinguishing features of several algorithms,
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[MHB+00]. Meißner et al. [MHB+00] used several data sets to compare raycast-

ing, shear-warp and splatting. Fig. 2.9 shows the rendered images for the skull

dataset, which was obtained from rotational biplane X-ray scan with the resolu-

tion of 2563. Fig. 2.10 shows the rendered images for the blood vessel in the head

dataset, which was obtained from rotational biplane X-ray with the resolution

of 2563. Lastly, Fig. 2.11 shows the rendered images for the Marschner-Lobb

dataset to display how these algorithms handle high frequency data. This was

generated from [ML94] with the resolution of 413.

The remainder of this section is organized as follows. First in Section 2.4.1,

we discuss the method of raycasting because it provides the simplest introduc-

tion to building a direct volume renderer. Section 2.4.2 discusses shear-warp

method, which is considered to be the fastest software renderer to date. In

Section 2.4.3, we present another fast and very popular direct volume renderer

called splatting. The final section describes the methods based on special hard-

ware or utilizing graphics boards.

2.4.1 Raycasting

Raycasting, introduced in [TT84] and [Lev88], provides a basis for the direct

volume renderers that is conceptually straightforward. The algorithm is very

versatile and uses either perspective or orthographic projection to generate an

image from the data. It also supports both pre-classification, [Lev88, Lev90],

and post-classification, [TSH98, GBKGl04a].

The raycasting algorithm gets its name from casting viewing rays through

the output image pixels into the volume. Each ray is subdivided into samples lo-
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(a) raycasting, m = 2 (b) shear-warp, m = 2 (c) splatting, m = 2

(d) raycasting, m = 6 (e) shear-warp, m = 6 (f) splatting, m = 6

(g) raycasting, m = 8 (h) shear-warp, m = 8 (i) splatting, m = 8

Figure 2.9: CT Head (skull) dataset, 2563, rendered with raycasting, shear-warp
and splatting to compare the rendering quality at different magnification levels,
m. Images from [MHB+00].
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(a) raycasting, m = 1 (b) shear-warp, m = 1 (c) splatting, m = 1

(d) raycasting, m = 2 (e) shear-warp, m = 2 (f) splatting, m = 2

Figure 2.10: MRI Head (blood vessel) dataset, 2563, rendered with raycasting,
shear-warp and splatting to compare the rendering quality at different magnifi-
cation levels, m. Images from [MHB+00].

(a) raycasting (b) shear-warp (c) splatting

Figure 2.11: Marschner-Lobb function, 413, rendered with raycasting, shear-
warp and splatting to compare the rendering quality at magnification level of
six. Images from [MHB+00].
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cated a specified distance apart, �s. Then, for pre-classification, the data around

the sample is classified via the transfer function to obtain the colors and opac-

ities. These colors and opacities are interpolated onto the sample. However,

computing them independently leads to an incorrect integration of color, which

is corrected by interpolating their product instead, [MHB+00].

Post-classification raycasting interpolates the data onto the sample first and

then classifies that sample via the transfer function. Tri-linear interpolation is

typically used but the framework allows for other filters. (See Section 2.2 for a

formal discussion of the interpolation kernels.) The final step in raycasting is

shading and compositing of samples along each viewing ray. This can be done

in back-to-front or front-to-back order, but the latter is preferred because it al-

lows the use of early ray termination to accelerate the raycasting time. Fig. 2.12

illustrates a raycaster using orthographic (a) and perspective (b) projections.

With the equal sampling distance, pattern sampling artifacts may arise in

the final image. In order to remedy this, the positions of the samples can be

jittered or samples from neighboring rays can be interleaved, [KH01]. An-

other sampling-related issue emerges with strictly iso-surface rendering, e.g.

the Marching Cubes algorithm [LC87], if the vertices making up the triangle

mesh approximating an iso-surface are constrained to lie on cuboid edges. The

inaccuracy of this approximation is fixed by analytically computing the location

of the iso-surface within each, cuboid [MKW+04].

As simple as brute-force raycasting is, it has a very high computational cost.

One of the popular accelerations is early ray termination [Lev90]. It stops all

computations for a ray that has reached an opacity threshold. After a certain

sample on a terminated ray, the contributions from the following samples are
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Figure 2.12: Raycasting illustrated in 2D. The ray samples get composited front-
to-back to allow early ray termination. To obtain a value at a sample, the data
(post-classification) or colors (pre-classification) are interpolated. When using a
perspective projection (b), the rays diverge from each other making it possible
to miss some part of the volume entirely (shaded in grey).

31



negligible and their computation can be omitted.

Another important acceleration is empty space skipping, which has several

forms. On the smallest scale, shading and compositing computations can be

skipped for an invisible sample, which still needs to be classified. Light-weight

space leaping [LK04] skips empty space up to the first visible voxel. Other meth-

ods build hierarchical min-max trees which allow the determination of whether

a node contains any visible data, [Lev90]. Another method reduces the mem-

ory storage requirement of the min-max tree by rearranging the data into bricks,

[GBKGl04a, GBKGl04b]. This strategy improves the coherency of data access for

the raycaster and allows skipping empty space one brick at a time. Raycasting

accelerations are discussed in more detail in Chapter 3.

Raycasting can exploit a great deal of parallelism derived from the fact that

each viewing ray can be computed independently, hence image subregions can

be computed simultaneously. One can also parallelize this method by subdi-

viding the data into regions and computing a separate output image for each.

However, a major difficulty is compositing these output images correctly. Par-

allelization schemes are discussed in Chapter 4.

Such schemes come naturally because raycasting provides a very flexible

software framework for volume and iso-surface image generation. It is easily

modified to use perspective or orthographic views, pre- or post-classification

of data, and a multitude of interpolating functions. Raycasting is considered

to produce images of the best quality because it uses tri-linear interpolation.

Because of the computational expense, this method requires clever accelera-

tion structures and parallel implementations to achieve real-time computation

speeds.
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2.4.2 Shear-Warp

Shear-warp was proposed by Lacroute and Levoy in [LL94] and extended by

Sweeney and Mueller in [SM02]. This algorithm is considered to be the fastest

software volume renderer, [MHB+00, SM02]. Its speed is achieved by employing

a clever encoding scheme and simultaneously traversing the data and the out-

put image. During the traversal, opaque image regions and transparent voxels

are skipped. Most of the speedup comes from the single traversal of the volume

data in memory order, which is extremely cache-friendly.

The insight of the shear-warp algorithm comes from splitting the projection

matrix into a shearing component and a warping component. To allow the most

cache-friendly data access, the authors also used a permutation matrix that flips

the order of major axes to make the z-axis most parallel to the viewing direction.

In a pre-processing step, the voxels are run-length encoded (RLE) based on

pre-classified opacities. This results in creating three separately encoded vol-

umes, one for each of the major viewing directions. The rendering is performed

by shearing the appropriate encoded volume such that the rays are perpendic-

ular to the volume slices. The rays obtain their sample values via bi-linear in-

terpolation within the traversed volume slices. A final warping step transforms

the volume-parallel baseplane image into the screen image. Because bi-linear

interpolation is used, the accuracy of the interpolated sample is limited. Fig.

2.13(a) shows shear-warp with an orthographic projection. Perspective projec-

tion can also be used but requires the sheared slices to be scaled based on their

distance from the eye, as shown in Fig. 2.13(b). The scaling is necessary because

perspective rays diverge as they traverse the volume.
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Figure 2.13: Shear-warp projection can be decomposed into three steps: shear-
ing of volume slices, projecting them onto an intermediate image and then
warping it to produce the correct output. Because rays diverge in the perspec-
tive transformation, the volume slices have to be scaled based on their distance
from the eye. Figure modified from [LL94].
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As a result, the distance between the sheared slices �s depends on the view-

ing direction as:

�s =

√(
dx
dz

)2

+

(
dy
dz

)2

+ 1, (2.22)

where [dx, dy, dz]T is the normalized viewing vector, reordered such that dz is the

major viewing direction. The value for �s ranges between 1.0 for axis-aligned

views,
√

2 ≈ 1.41 for edge-on views and
√

3 ≈ 1.73 for the corner-on views. One

cannot change �s to super-sample the data; thus the Nyquist-Shannon sam-

pling theorem4 is potentially violated for all but the axis-aligned views. Another

drawback of the method is that the resolution of the output image is obtained

by a bi-linear interpolation after the warping step, which becomes an issue for

viewport resolutions much larger than the data resolution, [MHB+00, SM02].

Sweeney and Mueller improved on the original shear-warp algorithm in

[SM02] by addressing most of its shortcomings: pre-classification of data, out-

put image blurriness at close-up viewing, artifacts from lack of sampling be-

tween sheared slices, and the large memory consumption due to the need for

three copies of the data. The authors noted that the RLE-encoded volumes are

identical for y and z major viewing directions and store only one, reducing the

memory footprint of the shear-warp algorithm by a third.

To fix blurring from pre-classifying the data, the order of interpolation and

classification has been switched. Now, one can approximate the iso-surface the

sample lies on by shading that sample, which requires a data gradient. Instead

of computing it directly, the authors used a look-up table into pre-computed

4The Nyquist-Shannon sampling theorem states that a sampled bandlimited signal with the
highest frequency B can be perfectly reconstructed from an infinite sequence of samples if the
sampling rate exceeds 2B, [SAG+05]. Because we are reconstructing a signal from the given data
samples, the reconstruction frequency must not drop below the original sampling frequency.
This means that to satisfy the theorem, the maximum sampling distance allowed is �s = 1.
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gradient directions.

To mediate the blurring of the final image after warping due to smaller data

resolution, the authors upsampled the sheared images. This allows for the post-

warp image resolution to be almost the same as the resolution of the output

image. Compared to the original method, this increases the required computa-

tion proportionally to the increase in sampling rate of the sheared images.

Final contribution of [SM02] is the ability to obey the Nyquist-Shannon sam-

pling theorem by using an extra sheared slice half-way in between the original

sheared slices. This adds quite a lot of overhead but guarantees the sampling

distance to be appropriate, �s < 1.0, at all times.

Because the shear transformation of data slices uses bi-linear interpolation in

memory-order, the original algorithm is very fast but does not produce images

as sharp as raycasting. The work by Sweeney and Mueller [SM02] attempts

to remedy the quality issue while retaining the cache-coherent data access of

the method. However, their proposed solution can significantly degrade per-

formance without promising results qualitatively similar to raycasting, [SM02].

Although considered to be the fastest software renderer to date, shear-warp is

not recommended for visualization where sharp features within the data must

be preserved until image quality issues are resolved.

2.4.3 Splatting

Splatting is a projective algorithm introduced by Westover in [Wes90]. The vol-

umetric data is thought of being comprised of overlapping radially symmetric
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basis functions scaled by the voxel values. The algorithm projects the centers of

these kernels onto the output image and then rasterizes and composes the ker-

nel footprints. The rasterization is achieved efficiently via using a pre-computed

footprint look-up table, which stores the contribution of data relative to the ra-

dius from the center of the kernel. A major advantage of this method is that it

projects and rasterizes only the data relevant to the output image.

The traditional splatting approach [Wes90] sums the voxel kernels within

the volume slices that are most parallel to the image plane. This approach is

prone to popping, or severe brightness variations, when the plane that is most

parallel to the image plane changes. Another drawback of this method is its

inability to change the sampling distance along each ray. Mueller and Crawfis

proposed splatting with image aligned slabs in [MC98] to mitigate both of these

issues. In their method, all voxels are projected and clipped onto slabs, which

are then composited together in front-to-back order. The slab thickness can be

changed allowing for various sampling distances along a ray. Fig. 2.14 shows

the 2D version of splatting with image aligned slabs, [MC98].

We observe that splatting replaces a point sample of raycasting by a sample

average across the sampling distance. This introduces an additional low-pass

filtering that helps to reduce aliasing when �s > 1.0. Splatting typically uses

radially symmetric Gaussian kernels, which have better anti-aliasing charac-

teristics than linear filters, with the side effect that they perform some signal

smoothing, [MHB+00].

The original splatting algorithm in [Wes90] has another contribution to blur-

ring due to pre-classifying the data. Mueller et. al. in [MMC99] rewrote the

algorithm to post-classify the data: splat footprints are rasterized onto the cur-
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Figure 2.14: Overview of splatting with image aligned slabs. Circles represent
the extent of radially symmetric interpolation kernels centered at the data loca-
tions represented by black dots. These kernels are clipped to the current slab,
which gets composited to the output image in front-to-back order. Figure mod-
ified from [MC98].

rent slab and then samples within are classified via the transfer function. Finally,

these samples are shaded to include light reflection off the iso-surface in which

the sample is embedded. This requires vector gradients, which Mueller et. al.

computed by generating gradient splats.

Huang et. al. in [HMSC00] improved the speed of the footprint rasteriza-

tion by using a 1D representation of the kernel, called FastSplat, instead of the

original 2D representation. To implement an acceleration similar to early ray

termination, one can use a dynamically computed screen occlusion map to cull

invisible splats early from the rendering pipeline, [MSHC99]. The main oper-

ations are the transformation of each relevant data location into screen space,

followed by an index into the occlusion map to test for visibility. If the splat
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is visible, then its footprint is rasterized into the sheetbuffer which is an im-

age of the current slab. It should be noted that although early splat elimination

saves the cost of footprint rasterization for invisible voxels, their transformation

must still be performed to determine their occlusion. Early ray termination, on

the other hand, causes the ray to stop and subsequent samples to be skipped,

[MHB+00].

Updating splatting to produce perspective images is difficult because the

perspective transformation changes the shapes of spherical splats into ellipses.

Hence, the kernels are no longer radially symmetric and their footprint has to

be recomputed for every ray. Mueller and Yagel accelerated perspective splat-

ting by combining it with raycasting in [MY96]. The perspective rays are traced

through the volume to intersect the radially symmetric splats. In this way, the

perspective projection is computed by raycasting, which allows the use of cer-

tain accelerations like early ray termination or bounding volumes.

Another method to produce perspective volumetric images with splatting

uses a transformation between spherical and elliptic splats. Zwicker et. al.

tackled this unnecessary overhead in [ZPvBG01] by using elliptical Gaussian

kernels to splat footprints directly. The authors approximated the perspective

projection by a local affine transformation which, they claimed, does not intro-

duce significant error. The output images tend to be less blurry because the

elliptic splats have reduced footprints due to non-uniform scaling. For more

details, see [ZPvBG01].

Because splatting is an inherently projective algorithm, one can leverage the

processing power of graphics boards for rasterization and projection. Zwicker

et. al. improved their earlier algorithm by using perspective-correct splats and
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implemented their method using shaders in [ZRB+04]. Another improvement

they introduced is clipping intersecting splats, which allowed for sharp features

to be displayed.

Besides the ability to leverage the computational power of a graphics proces-

sor as a projective algorithm, splatting guarantees that every contributing voxel

is included in the output image. Some averaging artifacts can appear due to the

use of radially symmetric interpolation functions and pre-classification of data.

In addition, producing correct perspective projection of splats introduces much

complexity and requires high computational power.

2.4.4 Custom Hardware and Texture Mapping

Using special hardware for volume rendering is appealing because it allows for

hardware implementation of the time-critical computations. There have been

several proposed approaches that achieve real-time volume rendering speeds

for medium-sized regular data sets: Cube [KK99], Vizard [KS97, MKW+02],

and VolumeProTM [PHK+99]. Fig. 2.15 shows the VolumeProTM board manu-

factured by TerraRecon, Inc. Changing or extending custom hardware is time-

consuming and costly; hence, once general processors increased their compu-

tational speed, these hardware solutions started to phase out of use, [MFS06].

Besides the lack of easy programmability and extendibility, custom hardware

solutions are limited to displaying datasets that fit into the on-board memory.

The discussion below follows the overview of the custom hardware solutions

presented in [MFS06].

The shear-warp algorithm, discussed in Section 2.4.2, was used to create
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Figure 2.15: The VolumeProTM board manufactured by TerraRecon, Inc. is an
example of special hardware designed for fast direct volume rendering. The de-
sign of VolumeProTM is outlined in [PHK+99] and [WBLS03]. Image from [Ter09].

the Cube system, [KK99]. This system uses a hybrid approach: the custom

board shears the volume data while the graphics board warps and compos-

ites the sheared slices. This design led to a well-known VolumeProTM board

[PHK+99], which has programmable sample and voxel processing pipelines.

Voxel processors traverse data slice-by-slice in memory order and store slices in

on-chip buffers. These buffers are traversed by sample processors responsible

for illumination, filtering and compositing, [MFS06]. Even though the original

VolumeProTM board used orthographic projection, the next generation uses per-

spective projection [WBLS03]. The authors also improved the rendering quality

by using tri-linear interpolation instead of the bi-linear interpolation used in

shear-warp algorithms.

Vizard [KS97] and Vizard II [MKW+02] were based on an image-order ray

casting including early-ray termination. The performance is not comparable to

VolumeProTM because it was implemented via field-programmable gate arrays.

This makes the system more extendable but at the cost of image computation

speed, [MFS06].
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All of these methods offer viable solutions for visualizing datasets, but are

becoming less favorable due to the improvements of the graphics processing

units (GPUs). As the technology progresses, the issues of very limited avail-

able on-board memory, slow floating-point computation speed and lack of pro-

grammability are being removed from the GPUs.

Cabral et al. [CCF94] was one of the first to use texture capabilities of GPUs

for rendering volumetric datasets. The volume is loaded into texture memory

and the hardware rasterizes polygonal slices parallel to the output image plane.

The slices are then blended in back-to-front order because then current hard-

ware lacked the accumulation buffer for opacity. The method allows the free

choice of the sampling distance between slices and uses tri-linear interpolation

to compute the values at sample locations, [MHB+00].

Engel et al. [EKE01] improved the rendering quality by proposing pre-

integrated volume rendering. Röttger improved on this approach with volu-

metric clipping and advanced lighting in [RGW+03]. These methods do not ac-

count for culling samples based on visibility. To achieve this, Li proposed to use

an opacity map which stores the minimum opacity of the pixels in the output

image, [LMK03]. The data is partitioned into subvolumes with similar proper-

ties that depend on the transfer function, e.g. data values within a certain range

are grouped together. Each subvolume is a node in a kd-tree which is used to

render the subvolumes in the correct visibility order. The subvolumes are culled

and clipped against the opacity map. Krüger et al. [KW03] improved the texture

mapping approach further by implementing early ray termination and empty

space skipping via an early depth test to terminate fragment processing. Later

approaches exploited the programmability of fragment shaders to implement
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raycasting on a GPU. See [MFS06] for details of several approaches.

With the release of Compute Unified Device Architecture (CUDA) it has be-

come possible to exploit the computational power of a GPU directly without the

need to utilize texture mapping or programmable fragment shading functional-

ity. It is now possible to implement many of the software renderers discussed

previously directly on a GPU and benefit from the massive parallelism and the

computational speed that the hardware provides. This seems to be the trend in

the current research.

2.5 Summary

In this chapter, we described the basic concepts embedded in a volume renderer.

We started with the model for the interaction of light with the volume of data

and derived the low-albedo rendering integral used by all algorithms. We dis-

cussed in detail the modules shared by all direct volume renderers, like data

interpolation, classification via transfer functions and compositing samples. We

used this preliminary information to describe several classes of algorithms that

are most popular: raycasting, shear-warp, splatting and hardware-based meth-

ods.

We have commented on accuracy and calculation speed of each of these

methods as these properties are the most important to the medical field ap-

plications. Visualizing scanned scalar data for diagnostic purposes imposes the

following constraints on accuracy of a rendering method: an algorithm should

not produce severe artifacts and must render all of the data to produce a volu-

metric image. For best diagnosis, the medical field requires each output image
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be calculated fast enough to allow real-time viewing.

Because of the constraint on image quality in medical applications, we chose

the raycasting algorithm as the basis for the direct volume renderer. To reach

this decision, we followed the comparison between algorithms discussed in Sec-

tion 2.4 and based on reviews presented in [MHB+00, MFS06, KM05]. The supe-

rior image quality of raycasting comes at a high computational cost, which was

prohibitive for the real-time applications in the past. However, current emer-

gence of massively parallelized computing, referred to as ”cloud computing,”

provides easy access to enough computational power making real-time visual-

ization possible without the need to purchase and maintain a similar system

locally. Using this technology can bring visualization tools capable of produc-

ing high quality output into operating rooms but it requires parallelizing the

raycasting algorithm to utilize such systems. The rest of this thesis focuses on

possible approaches and evaluates them.
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CHAPTER 3

RAYCASTING ACCELERATION METHODS

The previous chapter described several volume rendering algorithms in detail

and classified them based on [MHB+00, MFS06, KM05]. Because the quality of

output images is essential for medical applications, we selected raycasting as

the basis method for this work. Its largest drawback is the high computational

cost which necessitates the use of acceleration techniques described in this chap-

ter. Unfortunately, acceleration techniques alone are not sufficient enough to

achieve real-time rendering, hence the algorithm needs to be parallelized. Sev-

eral parallelization approaches are discussed in Chapter 4.

The basic raycasting algorithm, described in Section 2.4.1, consists of cast-

ing viewing rays through the output image pixels into the volume. The rays

can be parallel or diverging, depending on whether orthographic or perspec-

tive projection is used. The final color of a ray results from integrating color

contributions of volume data along its path. Since the volume is discrete, we

approximate this integral as a Riemann sum over a finite number of samples

along each ray. Applying a user-specified transfer function to interpolated data

at sample locations provides their color and opacity.

To gauge the complexity of an unaccelerated raycaster, we can calculate the

number of samples needed to generate an image. The cost of classifying and

compositing samples is minimal compared to shading and interpolating data

for each sample, hence we only account for the latter.

Consider a cubic data set with the 10243 voxels and a sampling distance of

one. For an orthographic view, the number of samples per ray is 1024. To pro-
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duce an output image with resolution of 10242, we need 10242 · 1024 ≈ 1, 074

million samples.

Section 2.3 discussed several interpolating functions with different proper-

ties and computational costs. The cheapest is the tri-linear interpolation because

it requires 14 additions and 14 multiplications per sample. Generating all sam-

ples for the above example requires 28 operations for each of the 1, 074 million

samples resulting in approximately 30 billion operations. Assuming these are

floating point computations taking five clock cycles each, a single 3.33 GHz pro-

cessor requires about 50 seconds to generate all of the samples. This time esti-

mate is rather crude and does not take into account any effects of fetching data,

compiler optimizations, or sample shading. However, it shows the importance

of acceleration methods for the simple raycaster.

Clearly, eliminating as many samples as possible will result in a substantial

speed-up. There are several techniques based on this idea, the most important

being early ray termination and empty space skipping. Similarly, rendering

images at smaller resolutions improves the speed as well. Another approach

decreases the amount of necessary calculations per sample via pre-computed

data. Gradients are a popular choice but their storage requires several times

more memory than the data itself. This emphasizes the problem of cache coher-

ent data access, which can be addressed by rearranging the data into bricks.

We start with a general discussion of acceleration techniques, then specify

details of the brick hierarchy and outline our accelerated raycaster. The remain-

der of this chapter is organized as follows. Section 3.1 describes the multiple

rendering resolutions and Section 3.2 describes gradient pre-computation. We

discuss early ray termination in Section 3.3 and empty space skipping in Sec-
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tion 3.4. Details behind the brick hierarchy are outlined in Section 3.5. We out-

line the accelerated raycaster in Section 3.6 and evaluate the performance of the

mentioned accelerations in Section 3.7. We conclude in Section 3.8.

3.1 Multiple Rendering Resolutions

Using several rendering resolutions is the simplest acceleration technique to im-

plement. It applies in a rapid exploration of the data, when output image resolu-

tion is not important, such as while changing the viewing location and direction

via rotation, zooming in/out, and panning around the volume. When the area

of interest is found, the resolution is increased to produce high quality output.

This technique is also useful for exploring the data via changing the transfer

function.

3.2 Gradient Pre-Computation

The technique of gradient pre-computation builds directly upon the principle

of trading memory for speed in compute-heavy applications. In volume vi-

sualization, pre-computation is applicable to gradients, which represent a vec-

tor normal to an iso-surface at the sample location and are needed for shading

samples. First we discuss why numerical gradients correctly approximate iso-

surface normals and the methods for their computation. We finalize by describ-

ing the scheme and its memory cost.

By definition, an iso-surface at a sample location is the surface of a constant

47
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Figure 3.1: Computing a normal vector to an iso-surface as a gradient of the
volume data.

value equal to the interpolated data value at that location. Mathematically, an

iso-surface through x0 is a level set of a function f : R3 → R representing the

volume data: {x | f (x) = f (x0)}, shown in Fig. 3.1. If we parametrize a curve

on this level set as γ(t) = x with γ(0) = x0, then the above can be rewritten as

f
(
γ(t)

)
= f (x0). Taking a derivative yields ∇ f (x0) · γ′(0) = 0. Since γ′(t) is tangen-

tial to the curve γ(t), the gradient ∇ f (x0) must be normal to γ′(0), and, hence, the

curve γ(t) at x0. Because the curve γ(t) is chosen arbitrarily, the gradient ∇ f (x0)

is normal to the iso-surface.

A gradient at a sample location can be computed via a tri-linear interpola-

tion of eight gradients located at the neighboring voxel locations. Central finite

differences, Equation (3.1), are typically used to compute the gradients located

inside the volume. At the edges, one can use one-sided differences, Equation

(3.2).

∂ f (x0)
∂xi

≈ f (x0 + hi) − f (x0 − hi)
2‖hi‖ (3.1)

∂ f −(x0)
∂xi

≈ f (x0) − f (x0 − hi)
‖hi‖

∂ f +(x0)
∂xi

≈ f (x0 + hi) − f (x0)
‖hi‖ , (3.2)
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S     

Figure 3.2: Voxel neighborhood to compute a gradient at a sample location S.
The line segments connecting outer voxels to the nearest neighbors are shorter
for pictorial purposes only.

where i = {1, 2, 3}, hi is the vector distance between voxels in the ith direction, and

x0 is the sample location aligned to the voxel grid. The superscript minus and

plus signs in Equation (3.2) indicate left and right one-sided differences respec-

tively. The gradient vector combines the results from applying finite differences

in each dimension. Computing all of the necessary gradients requires 32 voxels

surrounding the sample location, shown in Fig. 3.2. This is considerably larger

than the eight nearest neighbors needed for interpolating data.

Using central differencing with the grid spacing of ‖hi‖ = 1, for i = {1, 2, 3},
each of the eight vector gradients requires three additions and three multipli-

cations. Interpolating the gradients requires seven tri-linear interpolations per

dimension for a total of 21 interpolations per gradient. Hence the net cost of one

gradient estimation per sample is 2 · 21+ 3 · 8 = 66 additions and multiplications

each.

It should be noted that the gradients at voxel locations are shared by close
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samples of the neighboring rays, hence reusing gradients saves computation.

These values can be stored on either a local or a global level. The memory foot-

print of the global approach is several times larger than the data itself. Consider

a 16-bit dataset of 10243 resolution, which requires two giga-bytes (GBs) of stor-

age. Storing pre-computed gradients as 3D vectors of 32-bit floating point num-

bers requires an extra 12 GB of storage, a six-fold increase over the original data

size. This scalability severely limits the size of the data one can display. Local

gradient storage remedies this problem and is discussed in Section 3.5.3.

3.3 Early Ray Termination

Early ray termination is based on the way accumulated transmissivity of a view-

ing ray diminishes as more samples are added. Each sample contributes multi-

plicatively, described by Equation (2.9):

Tk =

k∏
i=1

(1 − αi), (3.3)

where Tk is the ray’s transmissivity after the first k samples and αi is the opacity

of the ith sample. If Tk reaches a small enough value at some sample, the con-

tribution from samples beyond it is nearly zero. This threshold can be a control

parameter provided by the user. We refer to it as an opacity threshold to signify

that, once the threshold is reached, the ray becomes opaque and blocks almost

all of the light after a certain sample.

Early ray termination was originally introduced by Levoy in [Lev88]. This

acceleration is excellent for culling distant samples that do not contribute to the

final color value. Consider a ray with the first five samples of opacity equal to
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0.9. Then the sixth sample contributes only

α6

5∏
i=1

(1 − αi) = 0.9 · (1 − 0.9)5 = 0.000009 (3.4)

of its color. If we change the opacities of the first five samples to 0.1, the sixth

sample contributes 0.059049 of its color. As can be seen, this method works well

only if a viewing ray reaches the opacity threshold before leaving the volume.

Hence, acceleration results vary depending on the data set and the transfer func-

tion used for visualization.

3.4 Empty Space Skipping

Early ray termination, described in the previous section, culls ray samples oc-

curring beyond the point where the ray reaches an opacity threshold. Empty

space skipping uses the transfer function to skip any samples that are totally

transparent and hence contribute nothing. There are two types of empty space

skipping, local (samples) and global (collections of samples).

On the local per sample level, an algorithm can skip samples with opacity

near zero. Even though this saves sample shading computations, data interpo-

lation is still necessary and may be expensive. To save this cost as well, one can

skip empty space on a global level by considering transparency of collections of

voxels. Most visualizations isolate small features within the volume by making

the surrounding space invisible. All samples within this space can be skipped

safely.

Light weight space leaping, introduced in [LK04], marches a small subset of

image rays, called detector rays, through the volume. Each detector ray records
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a number of transparent samples before reaching the first opaque one and stores

this into a leap buffer. The minimal distance is then spread from detector rays

to all other image rays. A major benefit of this method is its small memory

footprint; however, it may miss small details if the detector ray sampling is too

sparse relative to the data.

Min-max octrees [WG92] are a popular acceleration structure for empty

space skipping. Each tree node stores the minimum and the maximum values

of the data inside. A node is transparent if the transfer function classifies the

interval [min,max] as transparent. Computing this classification quickly utilizes

a summed area table, which encodes the opacities in the following manner:

Csat(0) = α0 = Ψo(0) Csat(k) = Csat(k − 1) + αk, (3.5)

where Csat is the summed area table and αk = Ψo(k) is the opacity of the data

value equal to k for k ≥ 1. A node is transparent if the following holds:

Csat(max) −Csat(min) =
max∑

i=min

Ψo(i) =
max∑

i=min

αi = 0. (3.6)

The computational expense of checking for transparency consists of two look-

ups into the table, which, for CT data sets, has 4096 entries. The min-max octree

is a key acceleration for iso-surface rendering because it helps culling irrelevant

tree nodes that do not contain the value of the iso-surface to be rendered.

These octrees work efficiently if the range of data within each node is small.

However, if the data occupies a large range, the node may be inaccurately clas-

sified as opaque and rendered every frame. This misclassification is caused

by the crude data approximation that min-max intervals provide and can be

improved by using quantized binary histograms. We discuss applying this ap-

proach within a data bricking hierarchy in Section 3.5.4.
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data array

volume data

Figure 3.3: Data stored in the linear order in memory: front-to-back one slice at
a time, each stored in row-major order.

3.5 Data Bricking Hierarchy

Bricking schemes have existed for some time and come in several varieties. One

can consider them an extension of min-max octrees that improves coherency of

accessing data by rearranging it. Besides empty space skipping, the hierarchies

improve rendering speed by integrating rays through one brick at a time.

Normally, the volume data is stored in memory in XYZ order, shown in Fig.

3.3: one data slice at a time each in row-major order. We refer to this order

as linear and define computing the memory index from a location within the

volume in the following way:

Ilin
(i, j,k) = i + Dx( j + Dy · k), (3.7)

where (i, j, k) is the integer voxel location, Dx and Dy are the dimensions of each

data slice. A sequence of images in Fig. 3.5 shows the data access pattern of

integrating through a 2D volume one ray at a time. It can be seen that the data

access is more or less random throughout the whole linear array.
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volume data

data array

Figure 3.4: Data with resolution 4×4×3 is stored in the bricked order in memory:
bricks stored linearly with linear storage of data within each brick. Each brick
has dimensions of 2 × 2 × 3.

To improve this access pattern, the data can be rearranged into bricks. Each

brick stores its data linearly, while it lies in a linear order with other bricks. This

is shown in Fig. 3.4. Computing the memory index into this data arrangement

is done in the following way:

B(i, j,k) = i′′ + BVDx( j′′ + k′′ · BVDy)

C(i, j,k) = i′ + BDx( j′ + k′ · BDz) (3.8)

Ib,lin
(i, j,k) = (BDx · BDy · BDz)B(i, j,k) +C(i, j,k),

with the variables defined in Table 3.1. Integrating along all rays one brick at

a time improves the data access pattern, shown as a sequence of images for a

2D case in Fig. 3.6. Once a brick is rendered, none of its interior data is needed

again. However, the data access is still random on the local per brick level, as

well as which brick is rendered next.

The data rearrangement faces a difficulty for samples near brick edges be-

cause they depend on data in the neighboring bricks. This can be remedied by

padding each brick with the edge data from its neighbors, which keeps data
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Figure 3.5: A sequence showing memory access pattern of integrating through
a 2D volume one ray at a time. The data is stored in a linear order.
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Figure 3.6: A sequence showing memory access pattern of integrating through
a 2D volume stored brickwise: linearly stored bricks with data stored linearly.
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Variable Description

(i, j, k) 3D integer location of a voxel

D{x,y,z} volume dimensions

BD{x,y,z} brick dimensions

BVD{x,y,z} =
D{x,y,z}

BD{x,y,z} number of bricks in each dimension

{i, j, k}′ = {i, j, k}mod BD{x,y,z} voxel location within a brick

{i, j, k}′′ =
⌊
{i, j,k}

BD{x,y,z}

⌋
location of a brick containing the voxel

Table 3.1: Variables in the bricked index computations.

access coherency but increases storage requirements which may not be permis-

sible. Alternatively, looking up the necessary data has no effect on memory

storage but affects access coherency. The latter method is discussed in Section

3.5.2.

To improve coherency further, we can store the data inside each brick in a

non-linear order. It decreases the distance in memory between spatially neigh-

boring data. We consider Hilbert and Morton orders in Section 3.5.1.

The hierarchy can be constructed from the bottom up to consist of two or

three levels. An example of a brick hierarchy with two levels is shown in Fig.

3.7. This benefits datasets with large expanses of transparent space spanning

multiple bricks. Each brick node holds references to its children nodes, rays

passing through it and a binary histogram for space skipping, discussed in Sec-

tion 3.5.4. During rendering, the rays are cast into the volume and are stored in-

side brick nodes they intersect. These rays are integrated front-to-back one node

at a time. If a node is deemed transparent, all of the rays inside are advanced to

the nodes they enter next. If a node is opaque, the algorithm recurses through

the node’s children. The algorithm integrates all rays residing in the brick at
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Figure 3.7: Brick hierarchy with two levels for a dataset of 5122 × 192 voxels.
At the lowest level lies a sub-brick with dimension of 163 voxels. At the second
level lies a brick which consists of two sub-bricks in each dimension. The whole
volume uses 16 × 16 × 6 bricks.

the lowest level of the hierarchy. Because the rays can only be integrated at the

deepest level, it is beneficial to keep the hierarchy shallow. The brick hierarchy

was introduced in [GBKGl04b, GBKGl04a] and forms the basis for accelerating

our raycaster. The details are discussed in the rest of this section.

3.5.1 Non-Linear Data Storage Order

Typically, the data is stored linearly within each brick which is excellent for

quickly fetching neighbors in the x direction. One can improve the cache co-

herency of accessing data in the other directions by storing it non-linearly. There

are two methods we consider: Hilbert order, [LS97], and Morton order, [Sam90].

Both are based on space-filling curves that place spatially neighboring data

closer together in memory than the linear order.

Fig. 3.8 shows both of the space-filling curves in 2D for several dimensions.
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Figure 3.8: Morton and Hilbert space-filling curves for several data sizes in 2D.
Notice the recursive nature of the curves.

The index computation for the Morton order, also known as Z-order, is illus-

trated in Fig. 3.9 and has the following form:

B(i, j,k) = i′′ + BVDx( j′′ + k′′ · BVDy)

Ib,mor
(i, j,k) = (BDx · BDy · BDz)B(i, j,k) (3.9)

+
(
swzl(i′) +

[
swzl( j′) � 1

]
+

[
swzl(k′) � 2

])
,

where (i, j, k) is the integer voxel location, B(i, j, k) is the 1D integer index of the

brick containing the voxel, � is a leftwise bit shift1, and swzl(m) is the function

that puts two zeros in between every bit of a binary form of m. The rest of the

variables are defined in Table 3.1.

The swzl(m) function in Equation (3.9) is rather expensive because it is made

up of several multiplications, bit shifts and additions. It can be accelerated via

a look-up table connecting indices to swizzled bits derived from them. For ex-

ample, consider a brick of 323 voxels. The swizzle look-up table would hold 32

1Consider a binary number 101101 = 45. Applying a single left bit shift results in 1011010 =
90 and is equivalent to multiplying the original number by 2.
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Figure 3.9: Morton address computation in 3D. The three-bit integer memory
addresses get swizzled for a 12-bit address into the data array. In essence, this
illustrates the operation

(
swzl(i′) +

[
swzl( j′) � 1

]
+

[
swzl(k′) � 2

])
.

entries of 16-bit integers requiring a total of 64 bytes of storage. In the current

processor architectures, this look-up table fits in exactly one cache line provid-

ing the best memory performance possible. Computing the Morton index can

be accelerated further by looking at B(i, j,k) in Equation (3.9), which represents

the memory location of the first voxel in the brick containing the voxel at (i, j, k).

Clearly, this memory location is the same for all of the voxels inside that brick.

Extrapolating further, this memory location is the same for all of the samples

that lie within that brick. Hence, during rendering, this quantity must be com-

puted only once per brick.

One issue with using a non-linear order is that brick dimensions must be

equal to each other and be a power of two due to the recursive nature of this

kind of non-linear indexing. If non-square dimensions are desired, the bricks

should be divided into cubic sub-bricks with dimensions that are powers of

two. Padding the original dataset with zeros is necessary if the data dimensions

are not divisible by brick dimensions.
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3.5.2 Fast Data Index Computation

When the volume data is stored in a linear order, the voxel location can be con-

verted into a memory index via Equation (3.7). However, this formula applies

only to one data location at a time. To get a value of a sample via interpo-

lation, one needs to access eight voxels neighboring the sample. For a non-

bricked dataset, all of the required indices can be computed in the following

way, [GBKGl04b]:

Ilin
(i, j,k) = i + Dx( j + k · Dy) Ilin

(i, j,k+1) = Ilin
(i, j,k) + Dx · Dy

Ilin
(i+1, j,k) = Ilin

(i, j,k) + 1 Ilin
(i+1, j,k+1) = Ilin

(i, j,k) + Dx · Dy + 1

Ilin
(i, j+1,k) = Ilin

(i, j,k) + Dx Ilin
(i, j+1,k+1) = Ilin

(i, j,k) + Dx(Dy + 1)

Ilin
(i+1, j+1,k) = Ilin

(i, j,k) + Dx + 1 Ilin
(i+1, j+1,k+1) = Ilin

(i, j,k) + Dx(Dy + 1) + 1,

(3.10)

where D{x,y,z} are the dimensions of the volume. The basic approach is to com-

pute the index of a voxel near the sample at x, which in three dimensions is

(i = 
xx�, j = 
xy�, k = 
xz�). This voxel is located at the D000 relative to the sam-

ple, shown in Fig. 2.6, which is the front lower left corner of the cuboid formed

by eight neighboring voxels. The indices for the rest of the neighbors can be

calculated by adding offsets, which are the same regardless of sample location.

In the case where data is bricked, this technique works well within the in-

terior of a brick but needs to be updated to incorporate the rearrangement of

data via Equation (3.8). First, one computes the index of the first voxel of a brick

containing the current sample. Then the method of adding offsets is applied to

compute the memory locations of voxels within the brick. Unfortunately, the

offsets differ when accessing neighbors for voxels located at the brick edges.

Hence these memory indices must be recomputed every time, which introduces

a branch in the memory index computation to test whether offsets can be used.
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Figure 3.10: Case classification of brick voxels used in the interpolation look-up
table. The first sample of the brick is in the front lower left corner and the last is
in the back top right corner. The separation distinguishes edge cases.

The execution of this branch stalls the processor and slows down the rendering.

Grimm et. al. remedied the issue of processor stalls by introducing an inter-

polation look-up table, [GBKGl04b]. Because the sample location directly pro-

vides the front lower left corner of the voxel cuboid, only seven offsets need to

be stored. The authors replaced the branch by reading appropriate offsets from

the table. These offsets are categorized based on whether a sample lies near an

edge of a brick or not. Because there are eight cases to consider, shown in Fig.

3.10, the table holds 56 integer offsets.

The cases are determined by classifying each voxel as on the inside or on

the positive edge of the brick. Assuming the indices reside within the interval

[0, BD{x,y,z} − 1] and letting D−
{x,y,z} = BD{x,y,z} − 1, Table 3.2 illustrates the computa-

tion of cases for all voxels inside a brick of dimension 323.

The computation of memory indices for neighboring voxels is updated to
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Case i&D−
x j&D−

y k&D−
z i+1 j+1 k+1 i&∼D−

x
BDx

j&∼D−
y

BDy

k&∼D−
z

BDz
i+2 j+4k

0 0-30 0-30 0-30 1-31 1-31 1-31 0 0 0 0
1 0-30 0-30 31 1-31 1-31 32 0 0 1 1
2 0-30 31 0-30 1-31 32 1-31 0 1 0 2
3 0-30 31 31 1-31 32 32 0 1 1 3
4 31 0-30 0-30 32 1-31 1-31 1 0 0 4
5 31 0-30 31 32 1-31 32 1 0 1 5
6 31 31 0-30 32 32 1-31 1 1 0 6
7 31 31 31 32 32 32 1 1 1 7

Table 3.2: Illustration of computing cases via GetLUT Index(i, j,k) used in the
interpolation look-up table. The brick has 32 voxels in each dimension, BD{x,y,z}=
32 and D−

{x,y,z}=BD{x,y,z}−1=31. Each successive i, j, or k is the result of the previous
operation involving it. Method from [GBKGl04b].

use the look-up table in the following way:

Ilin
(i, j,k) = i + Dx( j + k · Dy) Jlut = GetLUT Index(i, j, k)

Ilin
(i+1, j,k) = Ilin

(i, j,k) + LUT [Jlut][0] Ilin
(i, j+1,k) = Ilin

(i, j,k) + LUT [Jlut][1]

...
...

Ilin
(i, j+1,k+1) = Ilin

(i, j,k) + LUT [Jlut][5] Ilin
(i+1, j+1,k+1) = Ilin

(i, j,k) + LUT [Jlut][6],

(3.11)

where LUT [Jlut] is the interpolation look-up table and GetLUT Index(i, j, k) is a

function to compute the case Jlut that the current sample falls under. The rest of

the variables are defined in Table 3.1. The results of using GetLUT Index(i, j, k)

for different locations within a brick are shown in Table 3.2. An important ad-

vantage of linear memory order is that all 56 offsets stay constant for all voxels

in all bricks.

In the case when a non-linear brick order is used, the whole scheme needs to

be updated. Offsets are used to skip to the beginning of the brick holding the ap-

propriate neighbor voxel. The memory index of the voxel must be recomputed

relative to the beginning of its containing brick. The updated computation is

63



shown below:

Jb,lut = GetLUT Index(i′, j′, k′)

B′
(i, j,k) = (BDx · BDy · BDz) · (i′′ + BVDx( j′′ + k′′ · BVDy)

)
swzl3(i, j,k) = swzl(i′) +

[
swzl( j′) � 1

]
+

[
swzl(k′) � 2

]
Ib,mor
(i, j,k) = B(i, j,k) + swzl3(i, j,k)

Ib,mor
(i+1, j,k) = B(i, j,k) + LUT [Jb,lut][0] + swzl3(i+1, j,k)

...

Ib,mor
(i+1, j+1,k+1) = B(i, j,k) + LUT [Jb,lut][6] + swzl3(i+1, j+1,k+1),

(3.12)

where the variables are defined in Table 3.1. Once again, the quantity B′(i, j, k) is

constant for all voxels inside a brick and the interpolation look-up table keeps

the same 56 offsets for all bricks. The swizzling computation must be repeated

for each neighbor, but can be accelerated via an additional look-up table, dis-

cussed in Section 3.5.1.

The principles discussed in this section can be applied to generate an off-

set look-up table to aid gradient computation. Because each gradient estimate

needs voxels to the left and the right of the sample location, the necessary neigh-

borhood increases to 32 voxels. Each voxel in a brick falls into one of three cate-

gories: left edge, inside, and right edge, which requires 27 cases for the look-up

table. Out of 32 needed neighbor offsets, only 26 must be stored, since the eight

nearest offsets are available through the interpolation look-up table. In the end,

this new table stores 702 entries in addition to the previous 56. For more details,

see [GBKGl04b].
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3.5.3 Local Gradient Storage

As mentioned previously, gradient pre-computation is a viable acceleration

technique. However, storing gradients on a global level requires extremely high

memory storage, which limits the size of the dataset one can visualize. Also

accessing gradients puts a strain on memory bandwidth.

Grimm et. al. introduced a per brick gradient cache in [GBKGl04a]. Their

technique requires two data structures, a brick-sized gradient cache and a gra-

dient validity bit cache. Instead of computing all gradients within a brick prior

to rendering it, the authors compute only the necessary ones corresponding to

the opaque portions of the brick. When a gradient is needed, the validity bit

cache is checked for availability. If available, the gradient is fetched from the

gradient cache; otherwise, it is computed and the corresponding validity bit is

set to true. Once the rendering of the current brick is complete, both caches are

reset.

3.5.4 Empty Space Skipping via Binary Histograms

Min-max octree methods use intervals to classify nodes as transparent. Con-

sider a transfer function as a combination of intervals, each describing a separate

element. A node is transparent if the intersection of its [min,max] interval with

all of the transfer function intervals is empty. The summed area table approach,

briefly described in Section 3.5, may also be used to accelerate this process, but

is not very effective as it can lead to misclassification of transparent nodes with

wide data ranges.
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This issue is fixed by improving the accuracy of data representation. Grimm

et. al. replaced intervals with quantized binary histograms in [GBKGl04a,

GBKGl04b], which are defined as:

σA(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, i ∈ A

0, otherwise
, (3.13)

where i is the data value to test and A is the set of all data values within a brick.

To represent all data inside a brick perfectly, the width of this histogram would

be equal to the range of volume data values. This is not memory effecient, so

the authors quantize the histograms. For CT scans, we use a bin size of 64,

which subdivides the data range of [0, 4095] into 64 bins. These histograms fit

nicely within 64-bit integers where each bit represents a boolean bin. This can

be written as:

σA(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, ∃ x, s.t. x ∈ A, x ∈ [

64 · i, 64 · (i + 1)
)

0, otherwise
. (3.14)

In this case, i ∈ [0, 63] selects the bin for consideration of the histogram repre-

senting data in a brick A.

The transfer function must also be encoded with a quantized binary his-

togram which is based on the opacity of data:

λ(i) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, ∃ x, s.t. αx � 0, x ∈ [

64 · i, 64 · (i + 1)
)

0, otherwise
, (3.15)

where i is the data value to test and αx is the opacity of the data value x. A brick

is transparent if:

∀ i ∈ [0, 63], σ(i) ∧ λ(i) = 0. (3.16)

This method is more sensitive to largely varying data values within a brick and

allows for a quick brick transparency test requiring one 64-bit integer AND op-

eration.
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input : Volume data, brick dimensions BD{x,y,z}, and output image
resolution imgRes{x,y}

output: Initialized bricks

1 loadVolume();
2 precompGradients();
3 initBricks(BD, imgRes);
4 createInterpLUT(BD);

Figure 3.11: Algorithm for the initialization of the bricked raycaster.

3.6 Bricked Raycaster Algorithm

In this section, we describe our single-core accelerated raycaster and provide the

pseudocode for it. The algorithm outlined here uses only one level in the brick

hierarchy. It can be extended to use more than one level in a fairly straightfor-

ward way, described in Section 3.5.

The initialization step, shown in Fig. 3.11, must be completed every time

a new volume is loaded for visualization. The brick dimensions must be

set prior to loading in case padding with zeros is necessary. The function

loadVolume() rearranges the data into Morton order within bricks that are

stored linearly. Next, if desired, precompGradients() can be used to com-

pute gradients stored in the global cache. The function initBricks() initial-

izes data structures used within the brick hierarchy, like ray lists and quantized

binary histograms. Ray lists are cleared and the binary histograms are updated

to represent the data within. The function createInterpLUT() fills the in-

terpolation look-up table with the appropriate offsets recalculated based on the

updated brick and data dimensions.

Now the bricked raycaster is set to produce output images, sometimes re-
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image plane

culled brick

1

2

3
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78

bricked volume data

culled brick portion

Figure 3.12: Correct brick order ensuring front-to-back integration of rays
through the volume. The function orderBricks() from Fig. 3.11 creates this
order and culls away bricks behind the image plane.

ferred to as frames. An image is re-rendered every time there is a change in the

transfer function, viewing location or viewing direction. The inner core of the

bricked raycaster is outlined in Fig. 3.13. The first step is correctly setting up

the order in which to render bricks. This is achieved by the orderBricks()

function. It casts viewing rays into the volume and sets their starting location

just past the first intersection with a brick. Each brick also stores the references

to the rays that pass through it. While rays are cast, the bricks are culled to the

image plane and ordered based on the viewing direction, as shown in Fig. 3.12.

This ensures that rays are integrated in the front-to-back order.

Next, the algorithm runs through the bricks in the list to be rendered. If a

brick is deemed transparent via the quantized binary histogram, then all of its

rays are propagated into the next brick they intersect. If any of these rays exit

the volume, they are terminated. If the brick is opaque, then each of its rays

is integrated through the brick based on two stopping criteria: either the ray

reaches the opacity threshold and is terminated or it exits the brick.
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input : Output image resolution imgRes{x,y} and viewing direction
viewVec

output: Output image

1 outImg ← black;
2 brickOrderedList ← orderBricks(viewVec);
3 foreach curBrick in brickOrderedList do
4 if curBrick is opaque via binary histogram test then
5 foreach ray inside curBrick do
6 rayLoc ← location of ray;
7 rayColor ← color and opacity of ray;
8 while rayLoc inside curBrick and rayColor < opacity threshold do
9 interpDens ← getDensityAt(rayLoc);

10 interpGradient ← getGradientAt(rayLoc);
11 rayColor ← shadeSample(interpDens) and

compsiteSample(interpGradient);
12 increment rayLoc;
13 end
14 if rayLoc inside volume and rayColor < opacity threshold then
15 advance ray to next brick;
16 add ray to next brick;
17 end

18 end

19 else
20 foreach ray inside curBrick do
21 advance ray to next brick;
22 add ray to next brick if ray is inside volume;
23 end

24 end
25 remove all rays from curBrick;
26 end
27 return resulting output image outImg;

Figure 3.13: Single-core bricked raycaster algorithm that produces an output
image given viewing direction, transfer function and opacity threshold.

Integration along a ray is approximated by adding color contributions from

samples. At each sample location, getDensityAt() interpolates data and

getGradientAt() approximates gradients via tri-linear interpolation. The re-

sulting sample is classified via the transfer function and shaded using the Blinn-
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Phong reflection model. This color, in the end, is composited to the ray’s color

and opacity before incrementing ray’s location to the next sample.

Before moving onto the next ray, the algorithm checks whether the ray

should be terminated. If not, it is advanced into the next brick it intersects. The

final step before moving onto the next brick removes all ray references from the

current brick. Once all bricks have been processed, the algorithm returns the

computed output image.

In order to use the local gradient storage, the cache must be cleared prior to

integrating the rays through the current brick (line 5 in Fig. 3.13). This cache

would be used by the function getGradientAt() on line 10. Once again, the

function precompGradients() in Fig. 3.11 is omitted in this case.

We have outlined all of the accelerations and showed how they fit into the

raycaster framework. We evaluate their performance in the following section.

3.7 Intermediate Results

In order to evaluate the performance of the accelerations described in this chap-

ter, we utilize a single processing core to render several datasets using different

types of the basic bricked raycaster with an orthographic projection. A detailed

description of the rendering cluster and further results can be found in Chapter

5.

We start by investigating the effect of the different brick sizes on rendering

times in Section 3.7.1. In Section 3.7.2, we compare the effects of storing data

linearly and in the Morton order. Then, we evaluate the performance of com-
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puting gradients as they are needed, using a local gradient cache and a global

gradient cache in Section 3.7.3. Finally, we evaluate the effect of rendering to

different image resolutions in Section 3.7.4.

3.7.1 Brick Sizes

In this test, we compare how the brick sizes affect rendering times. Each of the

tests in this section used one of the cores in the dual quad-core 2.66 GHz Intel R©

Xeon R© X5355 machine with 16 GB of RAM. The test volume consisted of the

first 128 slices of the Pre-Operation Dataset (Section 5.2) with a data resolution

of 5122 × 128 voxels. Note that only the tests in this section used a portion of

the dataset, while all other tests used full datasets. To allow the asymmetric

bricks to store their data in the Morton order, each is subdivided into smaller

bricks of 83 voxels. These sub-bricks are arranged linearly within the bricks,

which reside linearly in the main memory. The rays cast into the volume are

integrated through one sub-brick at a time. We use the global gradient cache in

these tests (the performance of the other schemes is compared in Section 3.7.3).

We consider the brick sizes as combinations of 16, 32, and 64 voxels per di-

mension. Fig. 3.14 shows the primary axes relative to the dataset to help visu-

alize non-cubic brick sizes. For each brick size we render each of the four views

(Fig. 3.15) ten times at the output image resolution of 10242. We plot the aver-

age rendering times in Fig. 3.16. The plot shows that using cubic bricks with

dimensions of 32 or 64 voxels2 without sub-bricks requires the least amount of

time. The 32 × 32 × 32 bricks with sub-bricks take 9.3 sec per image on average

2These are labeled as “solid 32ˆ3” and “solid 64ˆ3” in Fig. 3.16. They are cubic without
sub-bricks, hence lacking the overhead associated with using sub-bricks.
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Figure 3.14: Primary axes relative to the volume dataset represented as a stack
of images.

for all views, while the 323 bricks without sub-bricks average 4.9 sec per image,

which is 1.9 times faster. Similarly, the 64 × 64 × 64 bricks with sub-bricks take

17 sec on average per image and the 643 bricks without sub-bricks take 5.4 sec,

which is 3.1 times faster.

Asymmetric bricks can benefit empty space skipping by exploiting direc-

tional similarity within the data encoded with narrower binary histograms.

However, our test concludes that the overhead of using asymmetric bricks is

higher than the benefits of improved space skipping. For example, bricks sized

16×64×64, 16×32×64 and 32×16×64 exhibit high variation in average render-

ing times between the views. On the other hand, cubic bricks have no preferred

rendering direction making the rendering times more consistent, an advantage

for seamless interactive viewing.
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(a) View 1: “Bottom View” (b) View 2: “Angled View”

(c) View 3: “Side View” (d) View 4: “Narrow Side Angle View”

Figure 3.15: Four views of the data to test the effect of brick sizes on rendering
time. Each of these images has the resolution of 10242 and shows the first 128
slices of the Pre-Operation Dataset (Section 5.2) for a total volume of 5122 ×
128 voxels. The “Angled Side View” shows the dataset rotated 45◦ around its
vertical axis, while the “Narrow Side Angle View” is the 45◦-45◦-45◦ corner view
of the dataset.

We compute the memory requirements to store a brick of 16-bit voxel data

and vector gradients in Table 3.3. This factor helps with identifying the brick

size that is optimal to fit into the L2 cache of a processor core. Table 3.3 also

shows the extra memory requirement associated with the entire single-level
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brick hierarchy, which includes the storage of 64-bit binary histograms, point-

ers to lists of rays inside each brick and the density lookup table with 56 integer

entries.

For the best performance, the chosen brick size must balance between gen-

erating a low number of bricks (larger brick dimensions) and fitting brick data

within the processor’s L2 cache (smaller brick dimensions). In our test, bricks

with 643 voxels each divide the volume into 128 pieces. However, storing the

data within each brick requires 3.5 MB, which is more than the size of the L2

cache for a single core in our system (3 MB). As the result, poor cache coherency

negatively impacts rendering times, which are on average 5.5 sec for a 10242

image per view.

Bricks containing 323 voxels require 448 KB of memory for storage and easily

fit within the L2 cache of a core on our system (3 MB). Using bricks of this size

subdivides our test volume into 1, 024 parts. This scheme produces the lowest

rendering times of about 4.9 sec for a 10242 image per view. This is nine percent

faster than using 643 bricks without sub-bricks. As the result, bricks with 323

voxels and no sub-bricks are used in the remainder of this work.

3.7.2 Data Storage Order

This test focuses on the impact that the data storage order has on the rendering

times. We consider storing the data within the bricks linearly and in Morton

order, while the bricks themselves are arranged in the linear order. We render

three entire datasets 30 times from each of the five viewing directions to produce

an image at the 10242 resolution. This test used one core of the 2.83 GHz Intel R©
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Xeon R© E5440 processor with 16 GB of RAM. For more details on the rendering

system, see Section 5.1, and for the descriptions of the datasets, see Section 5.2.

The five rendering views of the Pre-Operation Dataset are shown in Fig. 3.17.

The “45◦ Side View,” Fig. 3.17(d), shows the dataset rotated 45◦ around its ver-

tical axis so that only the vertical edges of the volume are parallel to the image

plane. The “45◦ Corner View,” Fig. 3.17(e), shows the dataset rotated 45◦ around

both its vertical and horizontal axes, so that all of its edges are at an angle to the

image plane. Similar renderings of the other datasets can be found in Section

5.2.

The averages of the rendering times are shown in Fig. 3.18. Relative dif-

ferences in the rendering times between using linear and Morton data storage

orders are around five percent. Based on this experimental data, one cannot

draw firm conclusions about which storage order is most beneficial. However,

the work by Mishchenko conclusively shows that the cache coherency of access-

ing data stored in Morton order is better than linear order, [Mis06]. We return

to this question later when we consider parallelization results in Section 4.3.

Most importantly, the average rendering times of the bricked raycaster are

much smaller than the brute-force method (within 20 − 50% depending on the

view). Fig. 3.18 refers to the brute-force algorithm as “Unbricked.” It uses no

bricking scheme and stores the entire dataset linearly in memory. The test algo-

rithm integrates each ray through the volume entirely prior to continuing to the

next. The algorithm still utilizes empty space skipping, global gradient cache

and early ray termination for each ray. As a result, we can claim that using a

bricking scheme improves rendering speeds.
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(a) “Bottom View” (b) “Front View”

(c) “Side View” (d) “45◦ Side View”

(e) “45◦ Corner View”

Figure 3.17: Test views of the Pre-Operation Dataset (Section 5.2).
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Figure 3.18: The effect on the rendering times due to data storage order for sev-
eral datasets. The bricked raycaster used 323 bricks and global gradient cache
to generate the output images at 10242 resolution. The “Unbricked” label refers
to the brute-force raycaster without the brick hierarchy. The effect of using the
gradient cache is evaluated in Section 3.7.3. The tests utilized a single core of
the Intel R© Xeon R© E5440 processor at 2.83 GHz.

3.7.3 Gradient Pre-Computation

In this test we compare three ways of computing gradients during rendering:

global pre-computed gradient cache (Section 3.2), local (brick) pre-computed

gradient cache (Section 3.5.3) and per sample computation. Each of these meth-

ods is implemented within the bricked raycaster using 323 bricks and one ray

sample per cuboid of voxels. The data was stored in the Morton order within

each brick. We render three datasets 30 times from each of the five viewing di-

rections to produce an image at the 10242 resolution. For computation, we use

one core of the quad-core Intel R© Xeon R© E5440 processor at 2.83 GHz.

The averages of rendering times are shown in Fig. 3.19. Based on the exper-

imental data, the global pre-computed gradient cache method provides render-
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Figure 3.19: The effect on rendering times due to gradient pre-computation
schemes for several datasets. To generate the output images at 10242 resolu-
tion, the bricked raycaster uses 323 bricks and one ray sample per cuboid of
voxels. The data is stored in Morton order. The tests utilized a single core of the
Intel R© Xeon R© E5440 processor at 2.83 GHz.

ing speeds that are 35 − 40% faster than other methods. However, as was men-

tioned earlier, this scheme has extremely high memory requirements. Hence,

local gradient cache is best when memory is a limited resource preventing the

use of a global gradient cache. The local gradient cache performed 0− 5% faster

than computing gradients as needed. As the result of this test, global gradient

cache is used in the remainder of the algorithms we test.

3.7.4 Multiple Resolutions

In this test, we assess the image scalability of the single-core bricked raycaster

with a global gradient cache and data stored in the Morton order. The brick size

is set to 323 and we use one ray sample per cuboid of voxels.
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In order to evaluate the scalability regarding output image size, we consider

a special rendering time ratio r instead of the average rendering time. This ratio

measures an increase in the average rendering time in terms of an increase in the

resolution of the output image. First, consider ratio r′(x, 256), as a fraction be-

tween the average time to render an image, t(x), and the average time to render

a 2562 image, t(256):

r′(x, 256) =
t(x)

t(256)
. (3.17)

Define ri to be an increase in the resolution of the output image from 2562. For

example, this ratio is ri(1024, 256) = 16 when the image resolution increases from

2562 to 10242. Using both of the ratios defined above, we can define the special

rendering time ratio r as

r(x, 256) =
r′(x, 256)
ri(x, 256)

. (3.18)

This ratio measures the rendering cost associated with increasing the output

image resolution in terms of the increase in that resolution. In other words,

if the ratio r is constant, then the cost of rendering a larger image is linearly

proportional to the increase in the resolution of the output image (as a square of

the single dimension of the image).

The averages of the rendering times are shown in Fig. 3.20. The trends be-

tween different views and output resolutions are similar across the test datasets.

The rendering times for our single-core bricked raycaster do not increase lin-

early with the increase in output image resolution. This behavior suggests de-

sired scalability in terms of output resolutions. We evaluate this premise again

for the parallelized raycaster in Chapter 5. Most imporantly, this test outlines

the benefits of using multiple resolutions for visualization. Because rendering

at a lower resolution can be created an order of magnitude faster, it allows the

user to quickly select the area of interest in the dataset before rendering it at a
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Figure 3.20: Rendering time ratio due to changes in the output image resolution
for several datasets. This ratio measures an increase in the average rendering
time in terms of an increase in the resolution of the output image, Equation
(3.18). We used the bricked raycaster with 323 bricks and one ray sample per
cuboid of voxels. The tests utilized a single core of the Intel R© Xeon R© E5440
processor at 2.83 GHz.
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higher resolution. Such interactivity is essential to a productive exploration of

data.

3.8 Summary

This chapter has focused on acceleration techniques for direct volume render-

ing algorithms and, in particular, raycasting. We started with important con-

cepts, such as early ray termination, empty space skipping and gradient pre-

computation. We combined them with the brick hierarchy to create the single-

core accelerated raycaster. We quantified the benefits of the approaches in order

to select which of the acceleration techniques are best.

Based on the results in Section 3.7, we can conclude that a bricked raycaster

with Morton data storage order, brick size of 323, early ray termination and

global gradient cache produces the lowest rendering times. To provide rapid

data exploration, multiple rendering resolutions have been used as well. How-

ever, because the rendering times are on the order of minutes per image, we

consider parallelization techniques in Chapter 4.
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CHAPTER 4

PARALLELIZING OUR BRICKED RAYCASTER

The previous chapter showed the need to lower the computational complexity

of the raycaster and described several acceleration techniques. However, their

use alone is not enough to achieve rendering times within the real-time domain.

As the result, our bricked raycaster must be parallelized. We consider this par-

allelization in two tiers. At the lowest level, the parallelization is based on a

shared-memory architecture made up of several processing cores. The higher

level tier considers a distributed memory platform made up of shared-memory

multi-core nodes. The ability to parallelize on both levels allows the algorithm

to run on the current high performance clusters.

This chapter discusses the parallelization of our bricked raycasting algo-

rithm to utilize a shared-memory processor with several computational cores.

In this thesis we refer to such a machine as a node and consider its architec-

ture to be schematically similar to the one shown in Fig. 4.1. This model is

essential because the next generation of general purpose processors will uti-

lize tens of processing cores, like Intel R© Larrabee [SCS+08]. To parallelize the

algorithm further, we discuss the utilization of several nodes comprising a dis-

tributed memory architecture.

The overall parallelization brings out two issues: data coherency and the bal-

ance between memory bandwidth and computational power. Data coherency

includes cache coherency within a multi-core processor, as described in Chapter

3. (The lower level tier). Parallelization for a cluster of nodes requires similar

coherency on the level of node’s main memory (RAM) instead of the multi-core

processor caches. (The higher level tier). In other words, if a node needs cer-
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(shared by all cores)

Quad-Core Processor

Figure 4.1: A typical quad-core processor architecture. Newer architectures add
an L3 cache in between the L2 cache and RAM.

tain data that it doesn’t have, a time penalty is incurred by retrieving data from

another node. For the bricked raycaster, this means that the brick size must be

chosen such that bricks fit into processor caches and the bricks higher in the

hierarchy fit into the main memory as well.

The balance between memory bandwidth and computational power can be

demonstrated best with an example that considers gradients for volume visu-

alization. There are two ways of computing the gradients: as needed during

rendering or as a pre-process that stores them to be accessed later. Fast pro-

cessors with insufficient memory bandwidth may perform poorly with the pre-

computed approach because the memory bandwidth becomes the bottleneck

for the system. Computing gradients as they are needed may improve the over-

all system performance since it might take less time to compute a gradient than

to fetch it from the main memory. Therefore, the best system optimally balances
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between requiring immense processing power and high memory bandwidth.

Section 4.1 discusses several methods that distribute the computational

workload of the bricked raycaster between different cores of one node. The ini-

tial attempt, discussed in Section 4.1.1, distributes rays to different cores while

rendering a particular brick. Another method, discussed in Section 4.1.2, as-

signs rendering of different bricks to different cores. Output image subdivision

is discussed in Section 4.1.3. Then, we outline several parallelizations for multi-

ple nodes: subdividing in image space, Section 4.2.1, and a hybrid subdivision

in both image and data spaces, Section 4.2.2. We evaluate the performance of

the proposed techniques in Section 4.3 and conclude in Section 4.4.

4.1 Single Multi-Core Node With Shared Memory

In this section, we consider parallelizing the algorithm to use all of the pro-

cessing cores available to a single node. This is necessary prior to discussing

changes to the algorithm necessary to utilize a cluster of nodes.

4.1.1 Subdividing Rays in a Brick

The heart of our bricked raycaster consists of integrating rays through each brick

while maintaining a specific brick order. This order is essential to ensure the

correct front-to-back integration of rays. If the order was arbitrary, compositing

ray samples becomes non-trivial. The simplest parallelization avoids this issue

by distributing the rays within a brick currently being rendered, as illustrated

in Fig. 4.2. The algorithm is updated such that each core fetches a new ray to
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core 1

core 2

core 3

core 1

image ray
current brick

Figure 4.2: Integrating in parallel through rays within a brick. In this 2D case,
the four rays in a brick are integrated by three different cores.

integrate after completing the integration of the previous one. In essence, this

method parallelizes the foreach loop of the bricked raycaster, line 5 of Fig.

3.13.

Simple as it may be, this approach has poor overall scalability resulting from

several issues. On the lowest level, there are typical load balancing difficulties

originating from the number of samples varying between rays. At the higher

level, the major contributor to the scalability issues is Amdahl’s Law, [HP94].

In essence, the speedup of the execution time for a program using multiple

processors in parallel is limited by the time used by the sequential fraction1.

Even though the integration through each brick is accelerated via parallelism,

the necessary preliminary computations are still sequential. The majority of

this computation involves the function orderBricks() which is responsible

for ordering the bricks and recording the first image ray-brick intersections.

1Consider a program that requires five minutes to complete, out of which one minute is spent
in the sequential fraction of that program. Due to Amdahl’s Law, the lowest possible execution
time is one minute. Hence the parallelization speedup is limited to 5 min

1 min = 5.
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4.1.2 Volume Data Subdivision

Because volume data is independent, subvolumes can be rendered in parallel.

This requires a volume subdivision scheme, like our brick hierarchy, to be lever-

aged for assigning subvolumes to processing cores. There are two paradigms

to consider: static and dynamic data assignment. The static method, used in

this work, assigns pre-determined subvolumes to each processing core for the

duration of the dataset visualization. The dynamic method feeds bricks yet to

be rendered to free cores.

However, the bricks are not completely independent from each other be-

cause samples near their edges require data from the neighboring bricks during

interpolation and gradient estimation. This can be resolved by “padding” each

brick with neighboring data or by fetching data from the neighboring bricks as

needed. We use the latter approach for the multi-core parallelization because all

of the necessary data lies in memory within the same node and can be accessed

fully by any of its cores.

During the rendering, each processing core uses the full bricked raycaster to

visualize its own part of the volume. As the result, there are multiple output

images that must be composited correctly to form the final image. Fig. 4.3 illus-

trates the application of this technique to a 2D volume rendered with two cores.

Fig. 4.3(a) shows the volume embedding a rectangle and an oval. The top por-

tion of the volume is rendered by core one and the bottom is rendered by core

two. Separate output from each core, shown in Fig. 4.3(b), must be composited

in the appropriate order to produce the correct final image.

Correct composition depends on several factors. First, rays must pass
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data for core 1

data for core 2

output image

(a) The 2D volume to be integrated

output from core 1

output from core 2

incorrect composition

correct composition

+

X

√

(b) Integration output and comparison of the possible compositions

Figure 4.3: Parallelization by dividing the volume between different process-
ing cores, each computing an output image. These must be combined in the
appropriate order to produce the final image.

through the volume contiguously, so that subdividing the data merely splits

them into several sections at the subvolume boundaries, as shown in Fig. 4.3(a).

This implies that the distance between ray samples must remain constant across

subvolume boundaries. Also, the ray’s opacity must be accumulated correctly,

which necessitates a specific compositing order. Splitting a ray into two parts

rendered separately is equivalent to a ray with two samples, which can be de-

rived mathematically. Samples along a ray are composited in the manner shown
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ray

core 1 core 2

subvolume edge

1 2 3 4

samples

(a) A ray is split into two parts

ray

core 1 core 2

subvolume edge

l r

(b) Equivalent ray with two samples

Figure 4.4: A ray split into two parts is equivalent to a ray with two samples
resulting from integrating the parts separately. The correct compositing ensures
that the final ray color and transmissivity are equal to the computation without
splitting the ray apart.

in Equation 2.13:

I(L) = Cnαn + tn

(
Cn−1αn−1 + tn−1

(
. . . (C1α1 + t1I0) . . .

))
ti = 1 − αi,

(4.1)

where αi and Ci are the opacity and the color of the ith sample respectively, and I0

is the background color. Consider a ray with four samples and I0 = 0, Fig. 4.4(a).

By integrating along the ray in the front-to-back order, we get the following net

color and transmissivity:

Cnet = C1α1 +C2α2(1 − α1) +C3α3(1 − α2)(1 − α1)+

+C4α4(1 − α3)(1 − α2)(1 − α1)

tnet = (1 − α4)(1 − α3)(1 − α2)(1 − α1).

(4.2)

We can also integrate each part of the ray separately, Fig. 4.4(b):

Cl = C1α1 +C2α2(1 − α1) tl = (1 − α2)(1 − α1)

Cr = C3α3 +C4α4(1 − α3) tr = (1 − α4)(1 − α3).
(4.3)

We can composite the left color-transmissivity pair (Cl, tl) with the right one

(Cr, tr) in two ways, depending on the order:

Clr = Cl + tlCr = Cnet tlr = tltr = tnet

Crl = Cr + trCl � Cnet trl = tltr = tnet.

(4.4)

90



core 2

core 1

output image

volume data

Figure 4.5: Subdividing the output image into parts to be rendered separately
by each processing core. This is a 2D example using two cores that integrate
their rays through the full volume independently.

The result Clr is correct because it keeps the compositing order the same as the

ray integration order, which in our case is front-to-back.

In the end, the bricked raycasting algorithm is updated such that each core

renders its subvolume completely as if it were the full volume. However, the

algorithm must allow ray samples near the subvolume edges to have access to

the voxels which lie in a neighboring subvolume. Finally, the processing cores

composite their results into the final image in parallel before returning it to the

user.

4.1.3 Output Image Subdivision

Output image rays are inherently independent from each other and can be com-

puted in any order allowing good scalability. Thus, each processing core renders

a separate subimage as shown in Fig. 4.5.

Once again, there are two ways to assign output image portions to cores. The
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static method does not scale well when the volume to be visualized occupies a

small portion of the output image. A bottleneck is created when only a few

cores perform most of the work.

A more efficient dynamic method subdivides the output image into small

portions resulting in more pieces than there are processing cores. In our im-

plementation, the image is divided into twice as many pieces as there are cores

which allows for good load balancing. Processing cores automatically request

the next subimage after they have finished rendering their previous one.

A way to balance the workload between processing cores further is to record

the rendering time for each subimage and recursively divide them to equalize

the rendering time. A quadtree or a KD-tree can be utilized to achieve this, but

this approach is not taken in this work.

Updating the bricked raycaster to work with this parallelization requires

minimal changes. Each processing core uses the original algorithm to render

the whole volume into its subimage. Because of the pixel independence, all

cores can simultaneously write into the output image.

4.2 Multiple Nodes Forming a Cluster

The previous section focused on parallelizing the bricked raycaster for multi-

core processor architectures with shared memory. This section discusses the

parallelization necessary to utilize a cluster comprised of many nodes with

multi-core processors. This two-tier structure eliminates the need to manage

shared memory within a system with many processors. Using a cluster of ma-
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chines can also suggest algorithm performance on the future processors with

tens of computational cores.

4.2.1 Output Image Subdivision

This technique is a natural extension of the image subdivision used by multi-

core parallelization in Section 4.1.3. The output subimages are rendered in a dy-

namic order with each assigned to the next available node. Subimage block size

is chosen such that it is divisible by the maximum number of cores each node

can utilize. Because each node uses an output image subdivision, the workload

of the resulting two-tier system can be shown by a fairly simple diagram (Fig.

4.6). A benefit of this method is that it is impervious to node crashes, since all of

the work is completed regardless of the number of servers available at any time.

4.2.2 Volume Data Subdivision

In this hybrid method, instead of subdividing the data in the two tiers similar

to the previous approach, each node renders the full output image of its subvol-

ume. These images must then be combined in the correct order to form the final

output image by either the visualization workstation (client) or the rendering

nodes in parallel. The data subdivision provides excellent scalability in terms of

the dataset size because each node can store a piece as large as its main memory

allows. Such spatial subdivision extends easily to render time-dependent 3D

datasets. The overview of the process is shown in Fig. 4.7.

One problem with such a division method surfaces when visualizing a small
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distribution within a node

Figure 4.6: Subdividing the output image to be rendered separately by three
rendering nodes. Each node is assigned a subimage shown on the right by cir-
cles. Rendering each subimage can take a different amount of time, signified by
their vertical spacing. Each node treats its subimage as a full output image and
renders it using the image subdivision technique of Section 4.1.3.

part of the dataset which resides within a subvolume for a specific node. One

node becomes entirely responsible for rendering this subvolume and no accel-

eration by parallel computation can be expected. This issue may be resolved by

dynamically rearranging the bricks between nodes.

4.3 Intermediate Results

We evaluate the performance of the techniques proposed in this chapter by con-

sidering the scalability of the rendering times in relation to the number of cores

(or nodes) and the output image size. We render the test datasets from five sep-

arate views using an orthographic projection. During testing of multi-core al-
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Figure 4.7: Subdividing the volume data between eight rendering nodes. Each
node integrates through its own subvolume and returns the full output image.
These are then composited to form the final image as shown on the right side.

gorithms, we use one node of our system to render the full output image while

altering the number of cores that node uses for computation. Each rendering

node consists of a dual quad-core Intel R© Xeon R© E5440 processor at 2.83 GHz

with 16 GB of RAM. To test the parallelization to many nodes, each node uses

all of its eight cores for rendering. Table 4.1 lists the naming conventions and

the classifications of the rendering algorithms that we evaluate in this chapter.

A detailed description of the test cluster and further results can be found in

Chapter 5.

First, in Section 4.3.1, we investigate the effect on the average rendering time

due to increasing the number of cores used for computation. In Section 4.3.2,

we consider the change in the average rendering times due to the increase in

the output image resolution. We repeat both of these tests to evaluate the multi-

node algorithms in Sections 4.3.3 and 4.3.4.

95



Renderer Title Short Description Bricked Data Storage

Unbricked, Linear
brute-force renderer with each core

no linearintegrating one ray at a time through

the entire volume

By Image, Linear
each core renders own part of the image

yes linear

By Image, Morton yes Morton

By Data
each core renders own subvolume to a

yes Mortonseparate image. these are then composited

in parallel to form the final image

By Brick Rays
each core renders some of the rays through a

yes Morton
brick. bricks are processed sequentially

Table 4.1: Brief classification of test algorithms evaluated in both multi-core and
multi-node setups. The figures throughout this section refer to the algorithms
by their “Renderer Title.”

4.3.1 Multi-Core: Scalability in the Number of Cores

In this test, we consider the speedup of the rendering times due to the increase

in the number of cores utilized for computation. We use a dual quad-core Intel R©

Xeon R© E5440 processor at 2.83 GHz node with 16 GB of RAM to render a dataset

view 30 times at the output image resolution of 10242. The analysis averages the

rendering times for the scalability computations.

We compute the scalability by calculating the speedup in the average ren-

dering time achieved by utilizing several cores. If an image takes t1 seconds to

render using one core and t8 seconds using eight cores, then the speedup is cal-

culated as a fraction t1/t8 . Fig. 4.8 shows this speedup for the “Bottom View” and

the “Front View” of the Pre-Operation Dataset. We include only these two fig-

ures because they are similar to the ones concerning other datasets and views.

Fig. 4.8(a) shows that the speedup for both the brute-force renderer (“Un-
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Figure 4.8: Rendering time speedup in the number of cores to generate an out-
put image with the resolution of 10242. The scalability plots for the other views
of the Pre-Operation Dataset are similar to (b), while the plots for the other
datasets are similar to both (a) and (b). The tests utilized a dual quad-core Intel R©

Xeon R© E5440 processor at 2.83 GHz node with 16 GB of RAM.

bricked, Linear”) and the bricked raycaster with linear data storage (“By Image,

Linear”) is higher than the linear scaling in the number of cores. For eight cores,

the brute-force renderer achieves a speedup of 10.32, the bricked raycaster with

linear data order achieves about 8.54, while the bricked raycaster with Morton

data order (“By Image, Morton”) manages 7.87. The rendering time using only

one core for the brute-force algorithm is 35.8 seconds while eight cores produce
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the same image in 3.47 seconds. As more cores are used to produce the im-

ages, the data they are accessing is closer together in memory when compared

to using one core. Several cores render through the dataset simultaneously, thus

accessing the data array with some interval. In other words, two accessed pieces

of data are not neighbors. In the case of the “Bottom View,” this interval may

have been favorable for pre-caching hence allowing for scalability higher than

eight. Even though these numbers are high, only the bricked raycaster with

Morton data order keeps this scalability independent of the viewing direction,

as can be seen in Fig. 4.8(b). For all of the datasets and views, this algorithm

achieves scalability in the range of [7.80, 7.90] for utilizing eight cores.

The scalability with respect to the number of cores used for rendering is

not a complete measure of performance. There are two issues that need to be

discussed further. First, as the image size changes, the speedup can also change.

To gauge how an algorithm reacts to changes in the output image resolution,

we use eight cores to render our datasets from different views using a variety of

resolutions. The results are shown in Section 4.3.2.

Second, even though one algorithm may scale better than another as the

number of cores increases, it may still generate the images slower. Hence we

must also consider the absolute rendering time of an image. We render 30 im-

ages at the resolution of 10242 using different numbers of cores of a dual quad-

core Intel R© Xeon R© E5440 processor at 2.83 GHz node with 16 GB of RAM. The

average rendering times are shown in Fig. 4.9. General trends are very similar

between datasets and test views, so we only consider the “Bottom View” and

the “Front View” of the Pre-Operation Dataset.

One can see that the rendering times of the proposed bricked raycaster are
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Figure 4.9: Average rendering times for different numbers of cores generating
an output image with the resolution of 10242. The plots for the other views of the
Pre-Operation Dataset are similar to (b), while the plots for the other datasets
are similar to both (a) and (b). The tests utilized a dual quad-core Intel R© Xeon R©

E5440 processor at 2.83 GHz node with 16 GB of RAM.

lower than any other algorithm when using two or more cores (25− 37% faster).

In addition, the proposed algorithm is able to render the test datasets into an

image with the resolution of 10242 at a rate close to one frame per second using

eight cores2.

2Rendering the “Bottom View” requires about two seconds per image, while all other views
are closer to one second per image. There is such a difference in rendering times because the
dataset takes up more of the output image in the “Bottom View” compared to any other view.
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Almost perfectly linear scalability in the number of cores and faster render-

ing times make the proposed bricked raycaster an excellent choice as an under-

lying renderer for a visualization system. An interesting observation is that the

linear data order within the bricks performs similarly to the Morton order, less

than two percent slower in all instances. The key idea is that rearranging the

data into a brick hierarchy improves the rendering speed over the brute-force

renderer without a significant dependence on the data storage order.

4.3.2 Multi-Core: Scalability in the Output Image Size

This test considers the effect that increasing the output image resolution has on

rendering times. The effect is measured by the rendering time ratio r, defined

in Equation (3.18). It measures the cost of rendering a larger image as a fraction

of the increase in its resolution. To obtain the rendering time, we average the

computation times that a dual quad-core Intel R© Xeon R© E5440 processor at 2.83

GHz node with 16 GB of RAM took for a particular view or resolution. Then,

we consider the maximum of these average times to provide the worst average

case. Fig. 4.10 shows the rendering time ratio for the “Bottom View” of the

Pre-Operation Dataset. The rest of the views for all of the datasets are similar.

An interesting trend emerges: rendering an image with the resolution of

20482 is about 48 times slower than computing an image with the resolution of

2562, which is about 75% of the cost associated with increasing the image reso-

lution 64 times. One can arrive at the conclusion that as the output image size

grows, the rendering time ratio decreases until it reaches a plateau. However,

we must note that this behavior for a 20482 image can be attributed to severely
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Figure 4.10: Rendering time ratios for different image resolutions of the Pre-
Operation Dataset from the “Bottom View”. Each were computed with eight
cores on one node made up of a dual quad-core Intel R© Xeon R© E5440 processor
at 2.83 GHz. The plots for the other views and datasets are very similar to this
one.

oversampling of the dataset, since each slice has the resolution of 5122. To test

this conclusion appropriately, one must use a dataset that has the slices with the

resolution of at least 10242.

4.3.3 Multi-Node: Scalability in the Number of Nodes

To extend the analysis in Section 4.3.1 from the multi-core to the many nodes

paradigm, we run similar tests using eight cores on each of a number of nodes.

Each node is made up of a dual quad-core Intel R© Xeon R© E5440 processor at 2.83

GHz with 16 GB of RAM. This allows us to gauge the algorithm potential in

utilizing future processors consisting of tens of computational cores.

We consider the rendering time speedup with the increase in the number of

nodes while rendering an output image at the resolution of 10242. Each node
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Figure 4.11: Rendering time speedup for different numbers of nodes to generate
an output image with the resolution of 10242. The plots for the other views and
datasets are similar to these. The tests utilized a dual quad-core Intel R© Xeon R©

E5440 processor at 2.83 GHz node with 16 GB of RAM.

uses eight cores to compute its part of the output image. Fig. 4.11 shows the

rendering time scalability for the “Bottom View” and the “Front View” of the

Pre-Operation Dataset. The other views and datasets exhibit similar behavior.

One can notice that the scalability of the selected algorithms is significant

but not perfectly linear. Our proposed bricked raycaster achieves a speedup of

20.6 when using 32 nodes in parallel (256 cores). Another important factor is
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that the proposed bricked raycaster is consistent in terms of scalability between

different views.

Since looking at the scalability alone is not sufficient to gauge the perfor-

mance of an algorithm, we also consider the absolute rendering times to pro-

duce an image at the resolution of 10242. The rendering time we measure is

computed in two steps. First, we record the time per node per computation.

Then, we average these times for all test runs for a specific view of a dataset.

Finally, we consider the worst time computed as the maximum of all average

rendering times. Fig. 4.12 shows the absolute rendering times for a number

of nodes using eight cores for computation each. We show only the “Bottom

View” and the “Front View” of the Pre-Operation Dataset but the rest are simi-

lar to these.

On average, the proposed bricked raycaster computes the images 33.7%

faster than the brute-force method, reaffirming the conclusion that bricking the

volume data improves rendering speed. Once again, the difference between

storing the data linearly or in Morton order is insignificant (Morton order is

two percent faster than linear order).

4.3.4 Multi-Node: Scalability in the Output Image Size

This test considers the effect that increasing the output image resolution has on

the rendering times. Instead of considering the image scalability in terms of the

rendering time ratio3, we look at the increase in cost associated with increasing

the image size. Fig. 4.13 shows the rendering time scalability for the “Bottom
3Rendering time ratio is defined in Equation (3.18) and measures the cost of rendering a

larger image as a fraction of the increase in its resolution.
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Figure 4.12: Average rendering times for several number of nodes to generate
an output image with the resolution of 10242. The plots for the other views and
datasets are similar to these. The tests utilized a dual quad-core Intel R© Xeon R©

E5440 processor at 2.83 GHz node with 16 GB of RAM.

View” and the “Front View” of the Pre-Operation Dataset. The plots for the

other views and datasets are similar to the ones in Fig. 4.13.

As can be seen from Table 4.2, the proposed bricked raycaster with Morton

order can render an image with the resolution of 20482 about 9.7 − 16.4 times

slower than an image at the resolution with 2562 depending on the view. One

can arrive at the conclusion from this observation that such scaling is propor-
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Figure 4.13: Rendering time for several image resolutions computed with 32
nodes using eight cores for computation each. The plots for the other views
and datasets are very similar to these. The tests utilized a dual quad-core Intel R©

Xeon R© E5440 processor at 2.83 GHz node with 16 GB of RAM.

tional to the increase in the single dimension of an image (8) rather than its

area (64). However, we must note that this behavior for a 20482 image can be

attributed to severely oversampling of the dataset, since each slice has the reso-

lution of 5122. To test this conclusion appropriately, one must use a dataset that
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By Image, Morton By Image, Linear Unbricked, Linear

Ave Bottom View 16.41 15.91 22.08

Ave Other Views 9.74 9.11 11.36

Table 4.2: Average time cost for 32 nodes computing a 20482 image over a 2562

image. The average cost is calculated over all datasets. Because the scaling
to produce the “Bottom View” is different from all other views, we separate the
two averages. The tests utilized a dual quad-core Intel R© Xeon R© E5440 processor
at 2.83 GHz node with 16 GB of RAM.

has the slices with the resolution of at least 10242.

4.4 Summary

In this chapter we have introduced several parallelization techniques for to the

bricked raycaster. We discuss the parallelization in two tiers: on the multi-core

level and the level of many nodes. Parallelization on both levels can build upon

the independence of pixels in the output image or the independence of data

within the volume dataset. We evaluate the scalability of the rendering times in

terms of the output image resolution, number of cores and the number of nodes.

We also consider absolute rendering times.

For the examples tested, we have found that bricking the data produces

nearly linear scalability (average of 7.85 for eight cores) in terms of the num-

ber of cores used for computation and the absolute rendering times 25 − 37%

faster than the brute-force raycaster. The difference in the rendering times be-

tween using linear and Morton data storage orders is two percent, which may

be considered negligible. As the result, our bricked raycaster is able to render

10242 output images of the test datasets at one second per image using eight

cores.
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The scalability of the rendering times in terms of the number of nodes is

not as linear as in the multi-core case, but the proposed algorithm achieves an

average speedup of 20.6 for 32 nodes rendering an image with the resolution of

10242. The bricked renderer is able to render a 10242 image of the datasets at

10.9 and 20.2 images per second for the “Bottom View” and the “Front View”

respectively (91.5 ms and 49.6 ms per image respectively). Such rendering speed

can be considered interactive but not real-time which we defined to be at least

30 Hz in Chapter 1.1.

All of the tests show that the proposed bricked raycaster has the potential for

the real-time volume rendering and we investigate several other performance

characteristics in Chapter 5.
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CHAPTER 5

RESULTS

The previous chapter describes the parallelization of the accelerated bricked

raycasting algorithm. Tests have shown that the proposed algorithm has ex-

cellent scalability qualities. The aim of this chapter is to evaluate and comment

on the overall success of the system as well as two additional tests.

We start with a description of the system and its hardware in Section 5.1. The

details of the test datasets are located in Section 5.2 and the views of these data

sets in Section 5.3. The descriptions of several transfer functions are in Section

5.4. Section 5.5 evaluates the algorithm performance in relation to two transfer

functions and Section 5.6 analyzes the dependence of rendering times on the

distance between ray samples. We conclude in Section 5.8.

5.1 Technical Description of the System

The culmination of the parallelization techniques discussed in Chapter 4 is the

ability of the proposed bricked raycaster to utilize a cluster of multi-core proces-

sors. The test cluster consists of 32 nodes connected by a gigabit network. Each

node has two quad-core Intel R© Xeon R© E5440 processors running at 2.83 GHz.

A schematic for this processor is shown in Fig. 5.1. Each individual server

node has 16 GB of Random Access Memory (RAM), which can hold any of our

datasets and their pre-computed gradients.

The visualization system is organized such that the client computer controls

all of the render nodes directly, as shown in Fig. 5.2(a). Fig. 5.2(b) shows the
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Figure 5.2: A schematic and a picture of our visualization system.

picture of our compute cluster. The rendering results are returned to the client

for final compositing and display. The resulting system is robust in terms of the

number of nodes one can use and the network type. Such structure is necessary

for utilizing massively distributed clusters.
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5.2 Datasets

To test the system performance, we use the three datasets described in this sec-

tion. Each of these is a CT scan of a patient diagnosed with an aortic aneurysm.

The data is stored as 12-bit integers following the DICOM standard, [NEM08].

Table 5.1 describes each of the three datasets in great detail.

Dataset Title Volume Resolution Voxel Spacing Slices Test Views

Pre-Operation 5122×928
0.0752 cm × 0.077 cm

Fig. 5.3 Fig. 5.6
0.02952 in × 0.0303 in

Post-Operation 5122×768
0.07092 cm × 0.1 cm

Fig. 5.4 Fig. 5.7
0.02792 in × 0.0394 in

CT14 5122×768
0.07622 cm × 0.0805 cm

Fig. 5.5 Fig. 5.8
0.032 in × 0.0317 in

Table 5.1: Details of test datasets. “Slices” column refers to the figure showing
two dataset slices and dataset visualization from the “Front View.” “Test Views”
column refers to the figure showing dataset visualization from each of the five
test viewing directions.

5.3 Dataset Views

As was mentioned in Section 3.7, there are five viewing directions we utilize

to test the algorithm performance: “Bottom View,” “Front View,” “Side View,”

“45◦ Side View” and “45◦ Corner View.”

The “Bottom View” sets the virtual camera below the dataset directed up-

wards. This ensures that the rays progress through the volume against the

memory order of bricks slabs (or slices in the case of unbricked renderers). The

“Front View” sets the virtual camera in front of the dataset. The “Side View” is

similar but sets the virtual camera to the left of the dataset. The “45◦ Side View”
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Figure 5.3: Two image slices of the Pre-Operation Dataset are on the left while
its visualization from the “Front View” is on the right.

Figure 5.4: Two image slices of the Post-Operation Dataset are on the left while
its visualization from the “Front View” is on the right.
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Figure 5.5: Two image slices of the CT14 Dataset are on the left while its visual-
ization from the “Front View” is on the right.

shows the dataset rotated 45◦ around its vertical axis so that only the vertical

edges of the volume are parallel to the image plane. The “45◦ Corner View”

shows the dataset rotated 45◦ around both its vertical and horizontal axes, so

that all of the volume edges are at an angle to the image plane.

Fig. 5.6, Fig. 5.7 and Fig. 5.8 show visualizations of the test views for the

Pre-Operation, Post-Operation and CT14 Datasets respectively. Finally, Fig. 5.9

shows the data histograms of the Pre-Operation Dataset. It can be noticed that

the density value of zero holds the largest amount of voxels because it represents

the empty air around the patient and in their lungs. Large portions of the data

have densities representing soft tissues and bone, which are rendered using the

Partial Transfer Function in Fig. 5.9(c).
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(a) “Bottom View,” (20.54 ms) (b) “Front View,” (20.51 ms)

(c) “Side View,” (21.07 ms) (d) “45◦ Side View,” (21.39 ms)

(e) “45◦ Corner View,” (20.96 ms)

Figure 5.6: Test views of the Pre-Operation Dataset. The times refer to the pro-
posed bricked raycaster rendering a 10242 image using 32 nodes.
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(a) “Bottom View,” (19.66 ms) (b) “Front View,” (20.25 ms)

(c) “Side View,” (21.22 ms) (d) “45◦ Side View,” (21.98 ms)

(e) “45◦ Corner View,” (20.4 ms)

Figure 5.7: Test views of the Post-Operation Dataset. The times refer to the
proposed bricked raycaster rendering a 10242 image using 32 nodes.
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(a) “Bottom View,” (19.46 ms) (b) “Front View,” (20.05 ms)

(c) “Side View,” (20.6 ms) (d) “45◦ Side View,” (20.9 ms)

(e) “45◦ Corner View,” (20.54 ms)

Figure 5.8: Test views of the CT14 Dataset. The times refer to the proposed
bricked raycaster rendering a 10242 image using 32 nodes.
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Figure 5.9: Data histograms for the Pre-Operation Dataset. The horizontal axis
represents the density value of a voxel using the positive Hounsfield Units
(HU). Note that the data histograms for all test datasets are similar and 2.62%
of voxels in the Post-Operation Dataset and 5.21% of voxels in the CT14 Dataset
are valued zero.
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5.4 Test Transfer Functions

Transfer functions are directly responsible for what fraction of the dataset is

visible to the user and affect the rendering times of our algorithm. In reality, the

visualization system must also take into account the windowing function1 Ω.

This operation can be expressed by rendering a dataset with a modified transfer

function Ψ′ = Ψ ◦Ω.

The two test opacity transfer functions included a “Partial Transfer Func-

tion” and a “Full Transfer Function.” The “Partial Transfer Function,” shown in

Fig. 5.9(c), includes some tissue and bone. This transfer function has been used

for all of the tests in Sections 3.7 and 4.3. The “Full Transfer Function” sets the

opacity above zero for all voxels in a dataset. Although not useful for visual-

ization, when all voxels have non-zero values, the computation times will be

slowest thus providing a maximum bound.

5.5 Dependence of Rendering Times on Transfer Functions

In this test, we vary the number of nodes used to render the datasets into an

image with the resolution of 10242. Table 5.2 shows the percentages of each

dataset that is visible to the user based on the transfer functions. Using the

Full Transfer Function for visualization produces the rendering times shown in

Fig. 5.10. On average, the rendering times are 4.27 times slower than using the

Partial Transfer Function. The rendering rate for the “Bottom View” is 3.12 fps

(320.6 ms per image) and the rate for the other views is 5.42 fps (184.3 ms per

1The windowing function rescales the volume data in order to enhance certain features. The
mapping is applied directly to the data prior to the application of the transfer function.
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Pre-Operation Dataset Post-Operation Dataset CT14 Dataset

Partial Transfer Function 1.43% 1.52% 1.33%

Full Transfer Function 100% 100% 100%

Table 5.2: Percentages of the datasets that are visible based on each of the trans-
fer functions.
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Figure 5.10: Average rendering times for several number of nodes to generate
an output image with the resolution of 10242 using the Full Transfer Function.

image). On the other hand, using the Partial Transfer Function can generate the

images at the rate of 10.9 fps (91.5 ms per image) for the “Bottom View” and

20.2 fps (49.6 ms per image) for the other views.

Even though the amount of data that is visible increases from 1.5% to 100%,
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the rendering time does not increase proportionally. This can be attributed to

the early ray termination.

5.6 Dependence of Rendering Times on Integration Step Sizes

All of the previous tests considered the scalability of rendering times in terms

of several parameters, like the number of nodes used for computation or output

image resolutions. Each test used an integration step size that depends on the

viewing direction and ranges from one for axis-aligned views to
√

3 ≈ 1.73 for

the “45◦ Corner View.” The step size sets the distance between sample points

along any ray and, depending on the dataset, may violate the Nyquist-Shannon

sampling theorem, [SAG+05].

This test considers the dependence of the rendering times on changes in the

integration step size. We define the step size as:

�s = k
∥∥∥v · h

∥∥∥, (5.1)

where v is the normalized viewing direction vector, h is the vector representing

the spacing between voxels and k is a scaling factor. It was set to k = 1.0 for all of

the previous tests. In order to satisfy the Nyquist-Shannon sampling theorem

for the “45◦ Corner View,” we must set k to be at most k = 0.577 to keep the

integration step size as �s = k
√

3 = 1. To change the integration step size, we

change the scaling factor k.

Fig. 5.11 shows the “Side View” of the Pre-Operation Dataset rendered with

the different values of k. The images generated with k = 0.25 and k = 1.0 are

visually similar besides the variation in brightness which originates from the
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(a) k = 0.25 (b) k = 0.5 (c) k = 0.75

(d) k = 1.0 (e) k = 1.25 (f) k = 1.5

(g) k = 2.0

Figure 5.11: “Side View” of the Pre-Operation Dataset rendered with different
integration step sizes that depend on the scaling k. White arrows indicate the
lost features between images with different k values.

lack of updating the opacity transfer functions to compensate for the smaller

step sizes. Note that when large step sizes are used, small features may be lost.

For example, the small blood vessels visible in Fig. 5.11(a) where k = 0.25 (white

arrow), are missing in Fig. 5.11(g) where k = 2.0.
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Fig. 5.12 shows the “45◦ Corner View” of the Pre-Operation Dataset ren-

dered using different values of k. Unlike the “Side View,” the “45◦ Corner View”

fails the Nyquist-Shannon sampling theorem when k = 1.0. The inside and the

outside walls of the femur, marked by a white circle, become less defined as k

increases. The blood vessels visible in Fig. 5.12(a) where k = 0.25 (white arrows)

disappear in Fig. 5.12(e) where k = 1.25. As mentioned previously, to satisfy

the Nyquist-Shannon sampling theorem at the axis-aligned views, k must be set

no higher than one. We must set k to less than 0.707 for the “45◦ Side View”

and k ≤ 0.577 for the “45◦ Corner View.” To ensure that the sampling theorem is

satisfied at all times during rendering and no volume data is potentially missed

by ray samples, the value of k must change depending on the viewing direction.

The only time to use a larger step size is during fast interaction when the con-

straint on the output quality can be relaxed, similar to the multiple resolutions

acceleration discussed in Section 3.1. To quantify the decrease in the computa-

tion time due to a larger step size, we tested our bricked raycaster with several

values of k.

The bricked raycaster used 32 nodes to render all test views of the datasets

at the resolution of 10242. We need to consider the absolute rendering times for

the Post-Operation Dataset depending on the integration step size as a function

of the scaling factor k. In our tests, changing the value for k from one to 0.5 to

satisfy the Nyquist-Shannon sampling theorem increased the rendering times

by 47%. Using an acceleration similar to the multiple resolutions but based on

the integration step size, we can switch between producing a 10242 image of a

lower quality at 20 fps (50 ms per image) and higher quality at 13.7 fps (73 ms

per image). With processors currently available, such a difference in rendering

times separates almost real-time performance from the interactive performance.
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(a) k = 0.25 (b) k = 0.5 (c) k = 0.75

(d) k = 1.0 (e) k = 1.25 (f) k = 1.5

(g) k = 2.0

Figure 5.12: “45◦ Corner View” of the Pre-Operation Dataset with different inte-
gration step sizes that depend on the scaling k. White arrows and circles indicate
the lost features between images with different k values.
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tion step sizes as a function of scaling factor k. We used 32 nodes to render an
image at the 10242 resolution.

5.7 Best Scalability of the Current Implementation

In this section, we use Amdahl’s Law to approximate the parallel fraction of our

implementation of the bricked raycasting algorithm running on our test cluster.

Note that these specific constraints apply only to this section and prohibit us

form arriving to general conclusions about the proposed algorithm. We can

speculate the theoretical limit to the speedup achievable by our unoptimized

raycaster and extrapolate it beyond 32 rendering nodes.

Amdahl’s Law states that the speedup of the program execution time due

to using multiple processors in parallel is limited by the sequential fraction of

that program, [HP94]. To express this mathematically, let P be a fraction of the

program runtime that accounts for the parallelizable portion. Setting the total

execution time to one, the sequential portion of the runtime can be expressed

as 1 − P. Letting N be a number of processors used to execute the program in

parallel, we can recompute the parallel fraction as P/N . The total execution time

using parallelization becomes (1−P)+ P/N , which can be used to define the time
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scalability in terms of the number of processors as:

S =
1

(1 − P) + P/N
, (5.2)

which is simply the ratio of the serial execution time and the parallel execution

time.

Once the value of P is known, one can arrive at several conclusions specific

to our unoptimized implementation running on our specific test cluster. The

first one is the maximum theoretical speedup that an algorithm can achieve:

S max = lim
N→∞

1
(1 − P) + P/N

=
1

1 − P
. (5.3)

To compute the value of P for our unoptimized raycaser, we use Least Squares

to fit the function in Equation (5.2) to our experimental results obtained by ren-

dering 10242 images with 32 nodes. The average value of P is 0.98087, which

limits the maximum speedup to S max = 52.54. The absolute rendering time for

a 10242 image using a very large cluster of our machines is limited to 36.03 ms

(27.75 fps per image) for the “Bottom View” and 19.66 ms (50.86 fps per image)

for the other views.

Secondly, we can use the value of P to extrapolate the performance of the

algorithm for a cluster made up of more than 32 nodes of the machines same as

our cluster. Fig. 5.14 shows the extrapolated scalability of rendering times up to

1024 nodes derived from the Amdahl’s Law with P = 0.98097.

5.8 Summary

In this chapter, we outlined the technical details of the rendering system’s hard-

ware. We described the datasets and defined five rendering views that were
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Figure 5.14: Extrapolated scalability of the rendering time for the unoptimized
bricked raycaster up to 1024 nodes. It was computed using the scalability defi-
nition of Amdahl’s Law in Equation (5.2) and P = 0.98097.

used to test the algorithms. We also evaluated the performance of the bricked

raycaster in relation to transfer functions and the integration step size. We used

Amdahl’s law to approximate the parallel proportion of our unoptimized imple-

mentation of the proposed algorithm (98%), which limits the speedup to 52.5.

This limits the maximum frame rate from 28 to 51 Hz for a 10242 image using a

very large cluster made up of the same machines as our test cluster.

The integration step size is view dependent to satisfy the Nyquist-Shannon

sampling theorem such that no data is potentially missed by a ray sample. Our

tests have shown that decreasing the step size by two increases the rendering

time by 47%. A large step size may be used when the constraint on the out-

put quality is relaxed, such as during fast exploration of data. Switching to an

appropriately small integration step size afterwards produces an acceleration

method similar to the multiple resolutions technique.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Discussion

This thesis presents algorithmic investigations to achieve interactive volume vi-

sualization of 3D scalar medical data. In this work, we outline the basic ray-

casting algorithm, acceleration techniques and parallelization methods, which

result in a bricked raycaster running on a cluster of multi-core machines. Al-

though we have not achieved real-time rendering speeds, defined to be at least

30 fps, our unoptimized algorithm is able to render datasets above ten frames

per second. We gauge the algorithm’s performance by its scalability because

future processor architectures will consist of tens of computational cores.

Following a comparison of several algorithms, we choose raycasting as the

algorithm to build upon because it produces high quality output, extends to in-

clude a variety of features and parallelizes in a straightforward way. However

to become a usable visualization tool, the brute-force raycaster must be accel-

erated. Several major improvements discussed in detail in Chapter 3 originate

from using a brick hierarchy: global empty space skipping, increased data ac-

cess coherency and local gradient cache. We also terminate rays early based

on their accumulated opacity and skip transparent samples along them. We re-

fer to the improved algorithm as the bricked raycaster. On our experimental

cluster, these accelerations reduce rendering times by 25 − 37%, but not into the

millisecond range required for the real-time visualization.

What seemed to be the most significant acceleration was selecting the data
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subdivisions (brick sizes) to eliminate the memory and bus-bandwidth latencies

and maximizing the utilization of the computing power of each core. If the brick

sizes were chosen too large to fit into the available cache size, the rendering

times were slower due to the poor cache coherency; the data requires extra time

to be passed between RAM and the L2 cache. If the brick sizes were chosen too

small, they subdivided the volume into too many pieces producing a similar

issue. To achieve fast rendering times, a volume visualization algorithm must

balance memory latency and processing power.

Our tests reveal that with careful selections of the brick sizes, one could

obtain almost real-time volume visualization capabilities on a 32-node cluster.

More importantly, the cache coherence of the data access due to the bricking

scheme produced rendering times that are independent of the viewing direc-

tion. Clearly, as processor cache sizes and the relationship of computing power

to memory accessibility change, brick sizes different from the ones reported may

be necessary. However, very positive results indicated that real-time visualiza-

tion can be achieved using standard hardware.

We considered and compared several parallelization approaches on both the

multi-core and multi-node levels to take advantage of the specific architecture of

our compute cluster. We subdivided the work within each level by considering

distributing the volume data as well as the output image. Based on the scal-

ability results, we proposed a system that utilizes output image subdivision.

Using 32 nodes each with eight cores, we achieved rendering times that are 20.6

times smaller than using one node for a 10242 image. This 64% parallelization

efficiency was fast enough for the average rendering rate of approximately 10

to 20 Hz for multiple views of our typical volume datasets. Using a resolution
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of 5122 for output images, the rate increases to roughly 27 to 40 Hz, sufficient

for real-time image generation. We showed that this efficiency can be closely

maintained with different dataset sizes, image viewing locations and output

resolutions implying that the reported scalability is valid.

We have tested the response of the proposed algorithm to changing the dis-

tance between ray samples, the integration step size. Smaller distances are

necessary to satisfy the Nyquist-Shannon sampling theorem while rendering

datasets at any non-axial view. Doubling the sampling rate increases compu-

tation times by approximately 47%. The ability to select the integration step

size is necessary for an acceleration where a bigger step size is used for rapid

data exploration prior to rendering the higher quality result with a step size that

satisfies the sampling theorem.

An important trend emerged with respect to the resolution of the output

image. If it were increased from 2562 to 20482, the rendering times increased 10

to 16 times instead of 64 times. Even though at such a high resolution we are

severely oversampling the test datasets, this scaling hints at good performance

for producing output at a high resolution.

The implications of these studies are vast. Currently the only way to achieve

real-time visualization is to buy expensive workstations which are tailor-made

for volume visualization. Most of these use a “marching cubes” type of algo-

rithm which incorporates lots of pre-processing to establish interpolated sur-

faces which then can be viewed in real time. This interpolation procedure adds

additional potential errors on the data originally obtained from the CT-scans,

and therefore is not as appropriate for the medical profession.
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On the other hand, our system displays the data directly without an inter-

mittent construct decreasing the potential for error. The algorithm maps to a

generic 32-node cluster which reduces the cost of a visualization system. The

achieved rendering speeds without optimization promise real-time frame rates

in the near future.

6.2 Future Work

There are several exciting opportunities for improvements to our work utilizing

the computing potential of GPUs, the extension to rendering 4D datasets, and

the algorithm use in an operating room.

Research into the utilization of custom hardware to visualize volumes has

continued since the early 1990s. Algorithm designers can maximize rendering

speeds by implementing computationally expensive functions with hardware.

However, these systems could not be changed easily. The programmability of

the current GPUs enables their use by software renderers and creates systems

that are easily extended or updated. The GPUs are highly parallelized systems

that surpass the CPU speed for floating point computation and memory access.

In addition, these systems offer hardware that tri-linearly interpolates the data.

As the result, GPUs provide an excellent platform as a visualization alternative

to multi-core computers. Each rendering node in a computational cluster (or a

“cloud”) can utilize several GPUs for visualization.

Implementing our generic system to use the graphics hardware could see an

additional improvement in performance because of faster memory access and

floating point computations. However, the amount of on-board memory avail-
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able to a GPU for storing data is much smaller than a workstation can provide.

This limits the size of the dataset one can visualize with a GPU without out-of-

core algorithms.

Even though rendering static 3D datasets enables their exploration, they

lack the time dimension necessary in analyzing dynamic effects. For example,

changes in the geometry of blood vessels occur due to the heart-beat or the im-

pact of stent placement during intravascular surgeries. With the new paradigm

of “cloud computing” and high enough internet bandwidth, it would be possi-

ble to use a cluster of machines to render time-dependent datasets in real time

and to deliver these images directly into an operating room. The ability to pro-

duce visualizations in real time will enable matching fluoroscopic images to 3D

volumetric images creating in a sense a virtual view, which potentially can en-

hance a surgeon’s understanding.
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