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Abstract

We propose two hardware mechanisms to decrease energy con-
sumption on massively parallel graphics processors for ray trac-
ing while keeping performance high. First, we use a streaming
data model and configure part of the L2 cache into a ray stream
memory to enable efficient data processing through ray reorder-
ing. This increases the L1 hit rate and reduces off-chip memory
accesses substantially. Second, we employ reconfigurable special-
purpose pipelines than are constructed dynamically under program
control. These pipelines use shared execution units (XUs) that can
be configured to support the common compute kernels that are the
foundation of the ray tracing algorithm, such as acceleration struc-
ture traversal and triangle intersection. This reduces the overhead
incurred by memory and register accesses. These two synergistic
features yield a ray tracing architecture that significantly reduces
both power consumption and off-chip memory traffic when com-
pared to a more traditional cache only approach.
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1 Introduction

Ray tracing [Whitted 1980] has traditionally been considered too
compute-intensive for interactive rendering. Primarily this is due to
less predictable memory system access patterns and the attendant
increase in system power consumption. As Moore’s law continues
to increase available computation resources, it has become more
feasible to support algorithms like ray tracing even on mobile and
embedded platforms where power consumption has become the pri-
mary bottleneck.

A number of researchers have leveraged SIMD GPU-style process-
ing to enhance the speed of ray tracing (e.g. [Wald et al. 2001;
Dmitriev et al. 2004; Reshetov et al. 2005; Wald et al. 2008; Bigler
et al. 2006]), but ray tracing’s divergent branching and irregular
memory access patterns suggest that an alternate approach may be
beneficial. Many have argued that a more decoupled parallel ap-
proach makes more sense for ray tracing [Govindaraju et al. 2008;
Seiler et al. 2008; Spjut et al. 2009; Kelm et al. 2009; Kopta et al.
2010]. In these cases, researchers opt for a Multiple Instruction,
Multiple Data (MIMD), or Single Program, Multiple Data (SPMD)
style of execution which reduces the requirement of collecting and
sorting rays into bundles suitable for SIMD processing.
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In this paper, we examine ray tracing on non-SIMD parallel hard-
ware and methods to reduce the power requirements while main-
taining rendering speed without compromising image quality. For
any specific algorithm, the arithmetic work load is fixed and leaves
little room for energy optimization except at the circuit level. The
primary opportunity lies in improving the memory system by re-
structuring data access patterns to increase cache hit rates and re-
duce off-chip memory bandwidth. From an energy and delay per-
spective, this is fortunate since getting an operand from main mem-
ory is both slower and three orders of magnitude more energy ex-
pensive than doing a floating point arithmetic operation [Dally
2013]. Additional improvements are possible by reducing regis-
ter access, and instruction fetch and decode energy by algorithmic
or architectural improvements.

Specifically, we propose two mechanisms to improve energy per-
formance for ray tracing. First, we use a streaming data model and
treelet decomposition of the acceleration structure similar to [Aila
and Karras 2010] but with specific hardware support for stream
buffers to increase L1 cache hit rates and reduce traffic to the oft-
chip DRAM. Note that the order in which the ray data entries in
these “buffers” are accessed is not important. In this work, we
employ single linked lists which are accessed in a LIFO manner.
This choice minimizes hardware overhead, allows a large number
of these LIFO structures to co-exist in a single memory block, and
removes the need to keep each structure in a contiguous address
space. The data streams for the traversal phase are marshaled using
a program controlled SRAM in place of a traditional L2 cache.

Second, we employ special-purpose pipelines which are dynami-
cally configured under program control. These pipelines consist of
execution units (XUs), multiplexers (MUXs), and latches that are
shared by multiple lightweight thread processors. Our focus in this
work is on the traversal and primitive intersection phases. We do
not attempt to optimize shading. The result is that we construct
two special purpose pipelines: one for BVH box intersection and
the other for triangle intersection. The essential benefit of this tac-
tic is to replace a large number of conventional instructions with
a single large fused box or triangle intersection instruction. This
significantly reduces register and instruction memory accesses as
well as reducing the instruction decode overhead. The energy effi-
ciency of these pipelines is similar to an ASIC design except for the
relatively small energy overhead caused by the MUXs and slightly
longer wire lengths [Mathew et al. 2004]. However unlike ASICs,
our pipelines are flexible since they are configured under program
control. These two synergistic features yield a ray tracing architec-
ture that significantly improves both power consumption and oft-
chip memory traffic for intersection and traversal when compared
to a more traditional approach, while preserving frame rates, and
the quality rendering that is the hallmark of ray tracing.

2 Background

Recent work in ray tracing has explored a variety of ways to in-
crease efficiency. Software approaches to increase performance on
traditional GPUs involve gathering rays into packets to better match
the SIMD execution model [Bigler et al. 2006; Boulos et al. 2007;
Giinther et al. 2007; Overbeck et al. 2008]. These systems also
tend to increase cache hit rates because the ray packets operate on
similar regions of interest. As an example of a SIMD approach



targeted specifically to ray tracing, the Mobile Ray Tracing Pro-
cessor [Kim et al. 2012], traces packetized rays through the scene
using four computation kernels, one for each step of the ray tracing
algorithm. To effectively handle their Single Instruction, Multiple
Thread (SIMT) execution model for ray tracing, the processor is
able to dynamically switch between 12-way SIMT (12 processors
each running the same instruction kernel on scalar data) and 4-way
3-vector processing (four threads, each using a 3-vector data path)
for different phases of the algorithm. While different from the data
path reconfiguration model we propose, it demonstrates that the dif-
ferent phases of the ray tracing algorithm can significantly benefit
from hardware pipeline customization.

More directly related to this work, specific approaches to band-
width reduction on more general architectures can involve cache-
conscious data organization [Pharr and Hanrahan 1996; Christensen
et al. 2003; Pharr et al. 1997; Mansson et al. 2007], and ray re-
ordering [Steinhurst et al. 2005; Boulos et al. 2008; Navrétil and
Mark 2006; Moon et al. 2010]. Some researchers specifically em-
ploy image-space rather than data-space partitioning for rays [Ize
et al. 2011; Brownlee et al. 2012; Brownlee et al. 2013]. Stream-
based approaches to ray generation and processing have also been
explored both in a ray tracing context [Gribble and Ramani 2008;
Ramani and Gribble 2009; Tsakok 2009; Aila and Karras 2010;
Navratil et al. 2007] and a volume rendering context [Dachille and
Kaufman 2000]. Although technical details are not published, at
least two commercial hardware approaches to ray tracing appear
to use some sort of ray sorting and/or classification [Imagination
Technologies 2013; Silicon Arts Coproration 2013].

Architectural approaches for high-performance ray tracing have
mostly involved the design and evaluation of non-SIMD parallel
approaches that are better suited to the run-time branching behavior
of ray tracing than wide SIMD processing [Govindaraju et al. 2008;
Seiler et al. 2008; Spjut et al. 2009; Kelm et al. 2009; Kopta et al.
2010]. These efforts can mostly be characterized as lightweight
general purpose cores with relatively simple memory systems that
support the simple sharing model of the parallel ray tracing algo-
rithm. We use this type of decoupled parallel architecture as a start-
ing point for our exploration.

3 Streaming Treelet Ray Tracing Architecture
(STRaTA)

We start with a parallel decoupled architecture called TRaX be-
cause it is designed specifically for ray tracing [Spjut et al. 2009],
and because it is publicly available with a cycle-accurate simulator
and LLVM-based compiler that we can modify for our own archi-
tectural evaluation [HWRT 2012]. We use this architecture as a
starting point because we also believe that the MIMD execution
model is better suited to ray tracing than the SIMD execution of
traditional GPUs [Kopta et al. 2008; Kopta et al. 2010]. In addition,
we can modify this architecture using the available tools to create
STRaTA. The basic TRaX architecture is a collection of simple, in-
order, single-issue integer thread processors (TPs) configured with
general purpose registers (32 by default) and a small local memory
(512B by default). The local memory acts as an extended register
file for local stack operations. The generic TRaX thread multipro-
cessor (TM) aggregates a number of TP cores which share more
expensive XUs such as floating point and inverse square root units.
The TPs in a TM also share multi-banked L1 instruction and data
caches. The TM and multi-TM chip architectures are shown in Fig-
ure 1. The specifics of the size, number, and configuration of the
processor resources are variable in the simulator. We use this in-
frastructure to explore opportunities to decrease external memory
bandwidth and energy usage in a parallel ray tracing architecture.
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Figure 1: Overall TRaX Thread Multiprocessor (TM) and multi-
TM chip organization [Spjut et al. 2009].

In short, the TRaX MIMD sharing model is the opposite of what
one finds in the SIMD structure of modern GPUs. TRaX shares data
path XUs while allowing each TP to operate on a different instruc-
tion to better support the divergent branching associated with sec-
ondary ray processing. Individual TRaX TPs do not employ branch
prediction and rely instead on thread parallelism to achieve high
performance and to keep the shared floating point units busy. The
result is small, simple TP cores, which can be tiled on a chip in a
reasonable die area budget. Multiple TP cores (32 by default) form
a TM block. Multiple TMs may then be aggregated onto a chip with
larger shared L2 caches. The result is a very large number of small
lightweight cores and a simple hierarchical memory system. The
throughput of TRaX is primarily limited by power and bandwidth
rather than the lack of computational resources.

3.1 Stream Queues

Aila and Karras [Aila and Karras 2010] focus on reducing off-chip
bandwidth by partitioning the Bounding Volume Hierarchy (BVH)
tree into sub-groups called treelets, sized to fit comfortably in either
the L1 or L2 data cache. Each node in the BVH belongs to exactly
one treelet, and treelet identification tags are stored along with the
node ID. During traversal, when a ray crosses a treelet boundary, it
is sent to a corresponding buffer where its computation is deferred
until a processor is assigned to that buffer. In this scheme, a pro-
cessor will work for a prolonged period of time only on rays that
traverse a single treelet. This allows that subset of BVH data to
remain in the L1 cache associated with that processor to increase
the L1 hit rate. This technique requires many rays to be in flight
at once in order to fill the treelet buffers, as opposed to the typical
single ray at a time per core model. The state of each ray must be
stored in global memory and passed along to other processors as
needed. Ideally, this auxiliary ray state storage should not increase
off-chip bandwidth drastically, since overall reduced bandwidth is
the end goal.

We adapt Aila’s approach by partitioning a special purpose ray
stream memory that replaces some or all of the L2 data cache. This
avoids auxiliary traffic by never saving ray state off-chip, at the cost
of a lower total number of rays in flight, which are limited by the
size of the ray stream partition. The TRaX architecture uses very
simple direct-mapped caches, which prove to work well enough for
the ray tracing data access patterns [Kopta et al. 2010], and save
area and power over a more complex associative caches. We assign
treelets to be exactly the size of an L1 cache, and a preprocess-
ing step arranges the treelets into cache-aligned contiguous address
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Figure 2: Benchmark scenes used to evaluate performance.

spaces. Since the L1 only contains treelet data, this guarantees that
while a TM is working on a specific treelet, each line in the TM’s
L1 cache will incur at most one miss, and will be transferred to
the L1 only once. We also modify Aila’s algorithm to differentiate
triangle data from BVH data, and assign each to a separate treelet.
This ensures that any TM working on a leaf or triangle treelet is
doing nothing but triangle intersections, allowing us to configure a
specialized pipeline for triangle intersection (see Section 3.3). Sim-
ilarly, when working on a non-leaf BVH treelet, the TM is comput-
ing only ray-box intersections utilizing a box intersection pipeline.

The ray stream memory holds the buffers for every treelet. Any
given buffer can potentially hold anywhere from zero rays up to
the maximum number that fit in the stream memory, leaving no
room for any of the other buffers. The capacity of each buffer is
thus limited by the number of rays in every other buffer. Although
the simulator models these dynamically-sized buffers as a simple
collection data structure, we envision a hardware model in which
the buffers are implemented using a hardware managed linked-list
state machine with a pointer to the head of each buffer stored in the
SRAM. Link pointers for the nodes and a free list could be stored
within the SRAM as well. This would occupy a small portion of
the potential ray memory: not enough to drastically affect the total
number of rays in flight since it only requires 8% or less of the total
SRAM capacity for our tested configurations. The energy cost of an
address lookup to find the head of the desired buffer, plus the simple
circuitry to manage the linked-list is assumed to be roughly equal to
the energy cost of the tag and bank circuitry of the L2 cache that it
is replacing. We believe this is a conservative assumption that will
need to be more precisely quantified in future work.

The programmer fills the buffers with some initial rays before ren-
dering begins, using provided API functions to determine maxi-
mum stream memory capacity. These initial rays are all added to
the buffer for the top-level treelet containing the root node of the
BVH. After the initial rays are created, new rays are added to the
top treelet buffer but only after another ray has finished processing,
thus new rays effectively replace old ones. When a ray completes
traversal, the executing thread may either generate a new secondary
shadow ray or global illumination bounce ray for that path, or a
new primary ray if the path is complete. Rays are removed from
and added to the buffers in a one-to-one ratio, and managing ray
generation is left to the programmer with the help of the API. Data
for each ray requires 48 bytes comprised of: ray origin and direc-
tion (24 bytes total), ray state (current BVH node index, closest hit,
traversal state, ray type, etc. totaling 20 bytes), and a traversal stack
(4 bytes, see section 3.2).

3.2 Traversal Stack

Efficient BVH traversal attempts to minimize the number of nodes
traversed by finding the closest hit point as early as possible. If
a hit point is known and it lies closer than an intersection with a
BVH node, then the traversal can terminate early by ignoring that
branch of the tree. To increase the chances of terminating early,
most ray tracers traverse the closer BVH child first. Since it is
non-deterministic which child was visited first, typically a traversal
stack is used to keep track of nodes that need to be visited at each
level. One can avoid a stack altogether by adding parent pointers
to the BVH, and using a deterministic traversal order (such as al-
ways left first then right), this however eliminates the possibility of
traversing the closer child first and results in less efficient traversal.

Streaming approaches such as the one used in this work typically
require additional memory space to store ray state. Rays are passed
around from core to core and are stored in some memory buffer.
In our case, the more rays present in a buffer, the longer a TM can
operate on that treelet, increasing the bandwidth savings. Storing
the entire traversal stack with every ray has a very large memory
cost, and would reduce the total number of rays in flight signifi-
cantly. There have been a number of recent techniques to reduce or
eliminate the storage cost of a traversal stack, at the cost of extra
work during traversal or extra data associated with the BVH such
as parent pointers [Smits 1998; Laine 2010; Hapala et al. 2011].

We use a traversal technique in which parent pointers are included
with the BVH so full node IDs are not required for each branch de-
cision. We do, however, need to keep track of which direction (left
or right) was taken first at each node. To reduce the memory cost
of keeping this information we store the direction as a single bit on
a stack and thus the entire stack fits in one 32-bit integer. Further-
more, there is no need for a stack pointer, as it is implied that the
least significant bit (LSB) is the top of the stack. Stack operations
are simple bitwise integer manipulations: shift left one bit to push,
shift right one bit to pop. In this scheme, after a push, either 1 is
added to the the stack (setting the LSB to 1, corresponding to left),
or it is left alone (leaving the LSB as 0, corresponding to right).
After visiting a node’s subtree we examine the top of the stack. If
the direction indicated on the top of the stack (left or right) is equal
to which “side” the visited child was on, then we traverse the other
child if necessary, otherwise we are done with both children and
pop the stack and continue moving up the tree.
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Figure 3: Performance on three benchmark scenes with varying
number of TMs. Each TM has 32 cores. Top graph shows base-
line performance and bottom graph shows the proposed technique.
Performance plateaus due to the 256GB/s bandwidth limitation.

3.3 Reconfigurable Pipelines

One of the characteristics of ray tracing is that computation can be
partitioned into distinct phases: traversal, intersection, and shading.
Each phase has a small set of specific computations that dominate
time and energy consumption. If the available functional units in a
TM could be connected so that data could flow directly through a
series of XUs without fetching new instructions for each operation,
a great deal of instruction fetch and register file access energy could
be saved. We propose repurposing the XUs by temporarily recon-
figuring them into a combined ray-triangle or ray-box intersection
test unit using a series of latches and MUXs when the computation
phase can make effective use of that functionality. The overhead
for this reconfigurability is fairly small as the MUXs and latches
are small compared to the size of the floating point XUs, which
themselves occupy a small portion of the circuit area of a TM.

Consider a hardware pipeline test for a ray intersection with an axis-
aligned box. The inputs are four 3D vectors representing the two
corners of the bounding box, the ray origin, and ray direction (12
floats total). Although the box is stored as two points, it is treated as
three pairs of planes — one for each dimension in 3D [Smits 1998;
Williams et al. 2005]. The interval of the ray’s intersection distance
between the near and far plane for each pair is computed, and if
there is overlap between all three intervals, the ray hits the box,
otherwise it misses. The bulk of this computation consists of six
floating point multiplies and six floating point subtracts, followed
by several comparisons to determine if the intervals overlap.

The baseline TRaX processor has eight floating point multiply, and
eight floating point add/subtract units shared within a TM, which
was shown to be an optimal configuration in terms of area and uti-
lization for simple path tracing [Kopta et al. 2010]. Our ray-box
intersection pipeline uses six multipliers and six add/subtract units,
leaving two of each for general purpose use. The comparison units
are simple enough that adding extra ones as needed for the pipeline
to each TM has a negligible effect on die area. The multiply and
add/subtract units have a latency of two cycles in 65nm at 1GHz,
and the comparisons have a latency of one cycle. The box-test unit
can thus be fully pipelined with an initiation interval of one and a
latency of eight cycles.

Table 1: Estimated energy per access in nanojoules for various
memories. Estimates are from Cacti 6.5.

L2/Stream memories
512KB IMB 2MB 4MB 8MB 16MB
0.524 0.579  0.686  0.901 1.17 1.61

Inst. Cache  Reg. File  Off-Chip
4KB 128B DRAM
0.014 0.008 16.3

Ray-triangle intersection is typically determined based on barycen-
tric coordinates [Moller and Trumbore 1997] and is considerably
more complex than the ray-box intersection. We remapped the
computation as a dataflow graph, and investigated several poten-
tial pipeline configurations. Because an early stage of the compu-
tation requires a high-latency divide (16 cycles), all of the options
have prohibitively long initiation intervals and result in poor uti-
lization of execution units and low performance. An alternative
technique uses Pliicker coordinates to determine hit/miss informa-
tion [Shevtsov et al. 2007] and requires the divide at the end of the
computation, but only if an intersection occurs. If a ray intersects a
triangle we perform the divide as a separate operation. Of the many
possible ray-triangle intersection pipelines, we select one with a
minimal resource requirement of four multipliers and two adders,
which results in an initiation interval of 18, a latency of 31 cycles,
and an issue width of two.

The final stage of our traversal shades the ray without reconfigur-
ing the TM pipeline. In our test scenes, shading is a small portion
of the total computation, and threads performing shading can take
advantage of the general purpose XUs without experiencing severe
starvation. Alternatively, if shading were more computationally in-
tensive or if the data footprint of the materials is large, the rays
could be sent to a separate queue or be processed by a pipeline con-
figured for shading. The programmer invokes and configures these
fixed-function pipelines with simple compiler intrinsics provided
in an API. Since the pipelines have many inputs, the programmer is
also responsible for loading the input data (a ray and a triangle/box)
into special input registers via compiler intrinsics. This methodol-
ogy keeps the instruction set simple and avoids any long or complex
instruction words.

4 Results

We use three ray tracing benchmark scenes to evaluate the perfor-
mance of our proposed STRaTA technique versus the TRaX base-
line, as shown in Figure 2. All scenes are rendered using a single
point-light source with simple path tracing [Kajiya 1986] because it
generates incoherent and widely scattered secondary rays that pro-
vide a worst-case stress test for a ray tracing architecture. We use
a resolution of 1024 x 1024, and a maximum ray-bounce depth of
five resulting in up to 10.5 million ray segments per frame. Veg-
etation and Hairball have extremely dense, finely detailed geome-
try. This presents challenges to the memory system as rays must
traverse a more complex BVH, and incoherent rays access large re-
gions of the geometry footprint in unpredictable patterns. Sibenik
is a much smaller scene with simpler architectural geometry, but is
an enclosed scene forcing ray paths to reach maximum recursion
depth before terminating.

We start with a baseline TRaX processor with 4MB of L2 cache
shared among the TMs on the chip. The off-chip memory chan-
nels are capable of delivering a max bandwidth of 256GB/s from
DRAM, similar to high-end GPUs. Figure 3 shows performance in
frames per second using this baseline configuration for a varying



Table 2: Instruction fetch energy (IFE) and register file energy (RegE) per frame (in Joules) using 128 TMs and an 8MB L2/Stream. Total
(fetch + register) energy as a percentage of the baseline shown as DIff (lower is better). The STRaTA streaming technique uses more
instructions than the baseline due to stream management overhead, but persistent pipelines are able to more than make up for that increase.

Sibenik Vegetation Hairball
IFE RegE Diff IFE  RegE Diff IFE RegE Diff
Baseline 0.927 1.63 - 1.60 2.81 - 1.07 1.88 -
Streams 1.13 1.99 122% 1.69 2.99 106% 1.10 1.93 103%
Streams + Pipelines | 0.911 1.60 98% 1.05 1.84 66% 0.805 1.41 76%
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Figure 4: Number of L1 misses (solid lines) for the baseline,
and the proposed STRaTA technique and stream memory accesses
(dashed line) on the three benchmark scenes. L1 hit rates range
from 93% - 94% for the baseline, and 98.5% to 99% for the pro-
posed technique.

number of TMs. Recall that each TM consists of 32 thread pro-
cessors, shared L1 instruction and data caches, and a set of shared
functional units. On Hairball and Vegetation, performance quickly
plateaus at 48 - 64 TMs for the basic non-streaming path tracer, and
on Sibenik begins to level off rapidly around 112 TMs. After these
plateau points, the system is unable to utilize any more compute
resources due to data starvation from insufficient off-chip DRAM
bandwidth.

Starting from this baseline configuration, we first investigate the ef-
fects on performance and bandwidth by repurposing the L2 cache
as a dedicated ray stream memory. This involves replacing the L2
cache with a programmer-managed SRAM for storing and retriev-
ing treelet streams. Treelet streams are rays associated with a partic-
ular BVH treelet. The size of the stream memory directly controls
how many rays can be in flight at any given time. There is some
overhead for using treelet streams and we want to make sure that
this data structuring model does not adversely impact performance
in terms of frames per second.

The STRaTA treelet-streaming model improves L1 hit rates signif-
icantly, but rather than remove the L2 cache completely we include
a small 512KB L2 cache in addition to the stream memory to ab-

sorb some of the remaining L1 misses. Figure 3 also shows perfor-
mance for the proposed STRaTA technique with increasing num-
bers of TMs. Performance does not differ drastically between the
two techniques, and in fact the STRaTA technique has higher per-
formance once the baseline is bandwidth constrained. The baseline
performance will always be slightly higher if neither technique is
bandwidth constrained, since the baseline has no treelet overhead.
For the remainder of our experiments, we use 128 TMs (4K TPs),
representing a bandwidth constrained configuration with a reason-
able number of cores for current or near-future process technology.

Figure 4 shows the on-chip memory access behavior for each scene.
The solid lines show total number of L1 misses (and thus L2 cache
accesses), while the dotted lines show the total number of accesses
to the stream memory for our proposed STRaTA technique. The
size of the L2 cache (baseline) and stream memory (STRaTA) are
the same. Reducing the number of accesses to these relatively large
on-chip memories reduces energy consumption. The significant in-
crease in L1 hit rate also decreases off-chip memory bandwidth
which has an even more dramatic energy impact.

Note in Figure 4 that the number of L1 misses for the baseline tech-
nique increases (and thus L1 hit rate decreases) as the L2 capac-
ity and frame rate increases. While this initially seems counter-
intuitive, there is a simple explanation. The L1 cache is direct
mapped and shared by 32 threads which leads to an increased prob-
ability of conflict misses. As the size of the L2 cache increases,
each thread has a reduced probability of incurring a long-latency
data return from main memory since it is more likely that the target
access will be serviced by the L2 cache. The increased performance
of each thread generates a higher L1 access rate causing more spo-
radic data access patterns. The result is an increase in the number
of L1 conflict misses. The number of stream accesses is constant
with regards to the size of the stream memory because it is only
affected by the number of treelet boundaries that an average ray
must cross during traversal. Since the treelet size is held constant,
the stream access patterns are only affected by the scene. Increas-
ing the stream size does however increase the average number of
rays in each treelet buffer, which allows a TM to spend more time
processing while the treelet’s subset of BVH data is cached in L1.

Figures 5 through 7 show the energy consumption per frame con-
sidering the L2 cache vs. stream memory accesses and off-chip
memory accesses for each scene, based on the energy per access
estimates in Table 1. All energy estimates are from Cacti 6.5 [Mu-
ralimanohar et al. 2007]. Not surprisingly, the baseline L2 cache
energy consumption increases as larger capacities cause not only
higher L1 miss rates (Figure 4), but the larger caches consume more
energy per access. The proposed STRaTA technique consumes sig-
nificantly less energy, but follows a similar curve. Note that the L1
misses (L2 accesses) for the proposed STRaTA technique in Fig-
ure 4 are to a fixed small, low energy 512KB L2 cache. The bulk
of the energy comes from the stream memory accesses, which are
constant with regards to stream size.

In addition to reducing memory traffic from the treelet-stream ap-
proach, we propose configuring the shared XUs into phase-specific
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Figure 5: Effect of L2 cache size (Baseline) and stream memory
size (STRaTA) on memory system energy for the Sibenik scene.

pipelines to perform box and triangle intersection functions. The ef-
fect of these pipelines is a reduction in instruction fetch and decode
energy since a single instruction is fetched for a large computation,
and a reduction in register file accesses since data is passed directly
between pipeline stages. Table 2 shows the effect of the persistent
pipeline techniques in STRaTA on the three test scenes. Note that
the instruction fetch and register file energy actually increases for
the basic STRaTA technique because of the overhead of the extra
instructions used to manage the treelet streams. By engaging the
phase-specific pipelines we see a reduction in instruction fetch and
register file energy of between 2% and 34%.

The total energy used per frame for a path tracer in this TRaX-style
architecture clearly is a function of the size of the L2 cache and
stream memory, and whether the phase-specific pipelines are used.
If we combine the two enhancements we see a total reduction in en-
ergy of the memory system (on- and off-chip memory and register
file) and the instruction fetch of up to 38%. These reductions in en-
ergy come from relatively simple modifications to the basic parallel
architecture with negligible overhead. They also have almost no im-
pact on the frames per second performance, and actually increase
the performance slightly in some cases. Although the functional
unit energy has not changed, the significant reductions in energy
used in the various memory systems, combined with low hardware
overhead, implies that these techniques would be welcome addi-
tions to any hardware architecture targeting ray tracing.

5 Conclusions

The STRaTA design presented in this work demonstrates two im-
provements for ray tracing that can be applied to throughput ori-
ented architectures. First, we provide a memory architecture to
support smart ray reordering when combined with software that
implements BVH treelets. By deferring ray computations through
streaming rays, we can greatly increase our cache hit rates, and
reduce the number of off-chip memory accesses by up to 70%
on the Sibenik scene, and up to 27% on the larger scenes. Sec-
ond, STRaTA allows shared XUs to be dynamically reconfigured
into phase-specific pipelines to support the dominant computa-
tional phase for a particular treelet type. When these phase-specific
pipelines are active, they reduce instruction fetch and register usage
by up to 34%. The two STRaTA techniques are a more compelling
competitor to current GPUs for ray trace acceleration.
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Figure 6: Effect of L2 cache size (Baseline) and stream memory
size (STRaTA) on memory system energy for the Vegetation scene.
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Figure 7: Effect of L2 cache size (Baseline) and stream memory
size (STRaTA) on memory system energy for the Hairball scene.
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